跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳育昇
研究生(外文):Wu,Yu-Sheng
論文名稱:「轉劣現象」在聚羥基烷酯生產菌株篩選與其發酵程序開發之應用
論文名稱(外文):Application of Shift-Down Phenomenon in PHAs Accumulation Bacteria Screening and Fermentation Production
指導教授:徐嘉澤徐嘉澤引用關係
指導教授(外文):Chia-Tse Hsu
口試委員:黃清龍魏大同潘建亮
口試委員(外文):Huang,Ching-LungWey, Ta-TungPan,Chien-Liang
口試日期:2012-06-22
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:轉劣現象聚羥基烷酯類
外文關鍵詞:Shift-DownPHAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
聚羥基烷酯類因性質近似熱塑型塑膠且同時具有生物相容與環境友善特性,為時下綠色材料開發的熱門選擇。目前製造方式多數以細菌醱酵為主,因此世人尋找適當的醱酵菌株,正方興未艾。吾人觀察聚羥基烷酯類累積細菌體內,多在碳源過量與特定營養因子;如氮源受限的不平衡生長時發生。考慮轉劣培養程序也會導致細菌暫時性不平衡的生長現象,本研究報告以糖蜜與蛋白水解物調製培養基,配合轉劣培養程序探討轉劣現象與細菌累積聚羥基烷酯類的關係,同時評估其可應用的方式。研究結果顯示聚羥基烷酯類累積確屬轉劣現象。此現象為本研究挑選的革蘭氏陽性桿菌與革蘭氏陰性假單胞菌所共有,不因這兩類細菌所需養分的碳氮比不同而受影響,應可作為一簡單、廣用的聚羥基烷酯類生產菌株篩選方法。研究中也挑選二環境篩選菌株以搖瓶方式進行轉劣培養生產測試。結果Bacillus sp. B1與Pseudomonas sp. H1以轉劣培養分別得到0.03 和0.07 g/L聚羥基烷酯類,經分析為聚羥基丁酯(PHB)。顯示轉劣培養程序也可作為大量生產聚羥基烷酯的批次醱酵程序。
Polyhydroxyalkanoates (PHAs), one of the biodegradable biosynthetic polymers were function as carbon and energy reservoirs in numerous bacteria. They were known to accumulate inside the bacteria usually when carbon source is excess and one else essential growth nutrient is limited. Shift-down, a temporary unbalanced bacteria culture method established by simple dilution culture procedure can equivalently induce the PHAs accumulation. A temporary unbalanced bacteria growth phenomenon established by shift-down culture procedure was applied to screening PHAs accumulating environment bacteria isolates. The culture method was applied to test PHAs accumulating in standard and environment bacteria isolates. Despite the typical limiting nutrient or C/N ratio, PHAs accumulation seems to be common in bacteria applied of the culture method. This result shown that the shift-down culture method is simple and broad spectrum in screening environment bacteria to find new industry available PHAs produced candidates. The products were characterized as PHB in recovery of Pseudomonas sp. and Bacillus sp.0.03 g/L and 0.07g/L respectively.
中文摘要 I
英文摘要 VI
誌謝 VII
目錄 VIII
圖目錄 XI
表目錄 XII
第一章緒論 1
1.1 前言 1
1.2研究動機與目的 3
第二章文獻回顧 4
2.1微生物不平衡生長現象介紹 4
2.1.1 Shift-Up現象 4
2.1.2 Shift-Medium現象 5
2.1.3Shift-Down現象 5
2.2 C/N Ratio生長因子要素 6
2.3 PHB鑑別方法介紹 7
2.3.1分子生物法 7
2.3.2螢光分析法 7
2.3.2.1尼羅藍 7
2.3.2.2尼羅紅 7
2.4單一養分對PHB累積影響 8
2.5 PHA代謝途徑 8
2.6生產PHAs菌種介紹 11
2.7各種碳源累積PHAs 種類介紹 12
2.8 PHB搖瓶醱酵培養 12
第三章實驗方法 14
3.1藥品 14
3.2儀器設備 15
3.3實驗菌株 16
3.4染劑與培養基配製 16
3.5實驗步驟 16
3.5.1革蘭氏陽性與陰性環境菌株篩選 16
3.5.2蘇丹黑染色 18
3.5.3菌株B1與H1於不同碳氮比生長曲線及PHAs累積情形探討 18
3.5.4菌株B1與H1轉劣培養程序及PHAs累積情形 19
3.5.5不同培養基的轉劣培養程序下菌株B1與H1 PHAs累積情形 20
3.5.6轉劣培養程序使標準菌株與環境菌株累積PHAs的情形 20
3.5.7菌株B1與H1以轉劣培養程序生產PHAs 21
3.5.8分離純化PHAs 21
第四章結果與討論 22
4.1革蘭氏陽性與陰性環境菌株篩選 22
4.2菌株B1與H1不同碳氮比生長曲線特徵探討 22
4.3菌株B1與H1不同碳氮比PHAs累積情形 23
4.4菌株B1與H1於常態與轉劣培養程序及PHAs累積情形 24
4.5不同培養基的轉劣培養程序下菌株B1與H1 PHAs累積情形 26
4.6轉劣培養程序使標準菌株與環境菌株累積PHAs的情形 28
4.7菌株B1與H1以轉劣培養程序生產PHAs 28
第五章結論 29
參考文獻 30
附件一環境篩選菌株16S rRNA gene序列 49



圖目錄
圖一、PHA之代謝路徑 10
圖二、細菌在不同碳、氮源比例下的生長曲線特徵 39
圖三、細菌B1在不同碳、氮源比例下的PHAs累積情形 40
圖四、細菌H1在不同碳、氮源比例下的PHAs累積情形 41
圖五、細菌於常態與轉劣培養程序的生長曲線特徵 42
圖六、細菌於轉劣培養程序的PHAs 蘇丹黑染色 43
圖七、細菌B1在 LB培養基之Shift Down程序PHAs累積情形 44
圖八、細菌 B1在 NB培養基之Shift Down程序PHAs累積情形 45
圖九、細菌 H1在 LB培養基之Shift Down程序PHAs累積情形 46
圖十、細菌 H1在 NB培養基之Shift Down程序PHAs累積情形 47
圖十一、環境菌株轉劣培養程序的PHAs 蘇丹黑染色. 48


表目錄
表一、用於16S rRNA gene定序的廣用PCR引子 36
表二、不同碳氮比的蔗糖水解蛋白培養液 37
表三、實驗菌種列表 38

1.Shilpi K.and Srivastava A. K. Recent advances in microbial poly- hydroxyalkanoates. Process. Biochem. 2005, 40:607-619.
2.Steinbuchel A. and Valentin H. E. Diversity of microbial poly- hydroxyalkanoic acid. FEMS Microbiol. Lett. 1995, 128: 219-228.
3.Verlinden R. A. J., Hill D. J., Kenward M. A., Williams C. D. and Radecka I. Bacterial synthesis of biodegradable polyhydroxy- alkanoates. J. Appl. Microbiol. 2007, 102(6):1437-49.
4.Lemos P. C., Serafim L. S. and Reis M. A. M., Synthesis of poly- hydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J. Biotechnol. 2006, 122: 226-238.
5.Lee S. Y. Plastic bacteria Progress and prospects for polyhydroxy- alkanoate production in bacteria. Trends Biotechnol. 1996, 14: 431–438.
6.Dias J. M., Lemos P. C., Serafim L. S., Oliveira C., Eiroa M. Albuquerque M. G., Ramos A. M., Oliveira R. and Reis M. A. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol. Biosci. 2006, 9:885-906.
7.Kessler B. and Witholt B. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J. Biotechnol. 2001, 86:97– 104.
8.Schlegel H. G., Gottschalk G. and von Bartha R. Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature. 1961, 191:463–465.
9.Ballesta J. P. G. and Schaechier M. Effect of Shift-Down and Growth Inhibition on Phospholipid Metabolism of Escherichia coli. J. Bacteriol. 1971, 107:251-258.
10.Mattingly S. J., Dipersio J. R., Higgins M. L. and Shockman G. D. Unbalanced Growth and Macromolecular Synthesis in Streptococcus mutans FA-1. Infection and Immunity.1976, 13:941-948.
11.Van Den Berg H. A. Multiple nutrient limitation in unicellulars reconstructing Liebig's law. Mathematical Biosciences. 1998, 149: 1-22.
12.Francis W. R. and Lewis A. J. Accumulation of 70S Monoribosomes in Escherichia coli After Energy Source Shift- Down. J.of Bacteriol. 1972, pp.142-151
13.Lewis A. J. Control of Stable Ribonucleic Acid Chain Initiation in Escherichia coli During Diauxie Lag. J. Bacteriol. 1972, 109(2):678.
14.Jacobson L. A. Regulation of ribonucleic acid synthesis in Escherichia coli during diauxie lag: accumulation of heterogeneous ribonucleic acid. J. Bacteriol.1970,102:740-746.e9
15.Dresden M. H. and Hoagland M. B. Polyribosomes of Escherichia coli. Re-formation during recovery from glucose starvation. J. Biol. Chem. 1967, 242:1069-1073.
16.Ballesta J. P. G. and Schaechter M. Effect of Shift-Down and Growth Inhibition on Phospholipid Metabolism of Escherichia coli. J. Bacteriol. 1971,107(1): 251-258.
17.Neidhart F. C. Properties of a bacterial mutant lacking amino acid control of RNA synthesis. Biochim. Biophys. Acta.1963, 68:365- 379.
18.Bruce A. R., Juliana A. R. and David G. C. Production of Poly-3- Hydroxyalkanoic Acid by Pseudomonas cepacia. Appel. and Environ. Microbial. 1989,55(3): 584-589.
19.Shamala T. R., Chandrashekar A., Vijayendra S. V. N. and Kshama L. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J. of Appl. Microbiol. 2003, 94, 369–374
20.Wu H.-A., Shyan S. D. and Lee C.-Y. Rapid differentiation between short-chain-length and medium-chain-length polyhydroxy alkanoate accumulating bacteria with spectrofluorometry. J. of Micribiol. Meth. 2003,53 131– 135.
21.Patrick G. W., Guy de Roo, and Kevin E O’C. Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 2005, 71(4):2046–2052.
22.Verlinden R. A. J., Hill D J., Kenward M. A., Williams C. D. and Radecka I. Bacterial synthesis of biodegradable polyhydroxy- alkanoates. J. Appl. Microbiol. 2007, 102: 1437-1449.
23.Ho I.-C., Yang S.-P., Chiu W.-Y. and Huang S.-Y. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. I. J of Biological Macromolecules. 2007,40:112–118.
24.Suzette M. A., María A. A. and Emilio D. Bacterial Polyesters Produced by Pseudomonas oleovorans Containing Nitrophenyl Groups. Macromolecules. 1999, 32(9): 2889-2895.
25.Yoshiharu D. and Chikara A. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy- omega.-chloroalkanoates. Macromolecules. 1990, 23 (15), pp 3705–3707.
26.Beccari M., Dionisi D., Guikiani A., Majone M. and Ramadori, R. Effect of different carbon sources on aerobic storage by activated sludge. Water Sci. Technol.2002, 45 (6), 157– 168.
27.Dionisi D., Majone M., Tandoi V. and Beccari M., .Sequencingbatch reactor: influence of periodic operation on performance of activated sludge in biological wastewater treatment. Ind. Eng. Chem. Res.2001, 40:5110–5119.
28.Dionisi D., Majone M., Ramadori R. and Beccari, M. Thestorage of acetate under anoxic conditions. Water Res. 2001, 35:2661–2668.
29.Dionisi D., Majone M., Papa V. and Beccari. M. Biodegradable- polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol.Bioeng.2004, 85 (6), 569–579.
30.Dionisi D., Majone M., Miccheli A., Puccetti C.and Sinisi, C. Glutamic acid removal and PHB storage in the activate sludge process under dynamic conditions. Biotechnol. Bioeng. 2004, 86 (7):842–851.
31.Aimi S., Scale up of biopolymer (PHB) fermentation from 500ml shake flasks to 2L stirred tank fermentor. Undergraduates Project Report (PSM) thesis, Universiti Malaysia Pahang. 2009
32.Enrico G., Murray M.-Y. and Yusuf C. Fermentation optimization for the production of poly (b-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology. 1999, 25:132–141.
33.Sudesh K. H. A. and Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 2000, 25: 1503-1555.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文