|
1.Shilpi K.and Srivastava A. K. Recent advances in microbial poly- hydroxyalkanoates. Process. Biochem. 2005, 40:607-619. 2.Steinbuchel A. and Valentin H. E. Diversity of microbial poly- hydroxyalkanoic acid. FEMS Microbiol. Lett. 1995, 128: 219-228. 3.Verlinden R. A. J., Hill D. J., Kenward M. A., Williams C. D. and Radecka I. Bacterial synthesis of biodegradable polyhydroxy- alkanoates. J. Appl. Microbiol. 2007, 102(6):1437-49. 4.Lemos P. C., Serafim L. S. and Reis M. A. M., Synthesis of poly- hydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J. Biotechnol. 2006, 122: 226-238. 5.Lee S. Y. Plastic bacteria Progress and prospects for polyhydroxy- alkanoate production in bacteria. Trends Biotechnol. 1996, 14: 431–438. 6.Dias J. M., Lemos P. C., Serafim L. S., Oliveira C., Eiroa M. Albuquerque M. G., Ramos A. M., Oliveira R. and Reis M. A. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol. Biosci. 2006, 9:885-906. 7.Kessler B. and Witholt B. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J. Biotechnol. 2001, 86:97– 104. 8.Schlegel H. G., Gottschalk G. and von Bartha R. Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature. 1961, 191:463–465. 9.Ballesta J. P. G. and Schaechier M. Effect of Shift-Down and Growth Inhibition on Phospholipid Metabolism of Escherichia coli. J. Bacteriol. 1971, 107:251-258. 10.Mattingly S. J., Dipersio J. R., Higgins M. L. and Shockman G. D. Unbalanced Growth and Macromolecular Synthesis in Streptococcus mutans FA-1. Infection and Immunity.1976, 13:941-948. 11.Van Den Berg H. A. Multiple nutrient limitation in unicellulars reconstructing Liebig's law. Mathematical Biosciences. 1998, 149: 1-22. 12.Francis W. R. and Lewis A. J. Accumulation of 70S Monoribosomes in Escherichia coli After Energy Source Shift- Down. J.of Bacteriol. 1972, pp.142-151 13.Lewis A. J. Control of Stable Ribonucleic Acid Chain Initiation in Escherichia coli During Diauxie Lag. J. Bacteriol. 1972, 109(2):678. 14.Jacobson L. A. Regulation of ribonucleic acid synthesis in Escherichia coli during diauxie lag: accumulation of heterogeneous ribonucleic acid. J. Bacteriol.1970,102:740-746.e9 15.Dresden M. H. and Hoagland M. B. Polyribosomes of Escherichia coli. Re-formation during recovery from glucose starvation. J. Biol. Chem. 1967, 242:1069-1073. 16.Ballesta J. P. G. and Schaechter M. Effect of Shift-Down and Growth Inhibition on Phospholipid Metabolism of Escherichia coli. J. Bacteriol. 1971,107(1): 251-258. 17.Neidhart F. C. Properties of a bacterial mutant lacking amino acid control of RNA synthesis. Biochim. Biophys. Acta.1963, 68:365- 379. 18.Bruce A. R., Juliana A. R. and David G. C. Production of Poly-3- Hydroxyalkanoic Acid by Pseudomonas cepacia. Appel. and Environ. Microbial. 1989,55(3): 584-589. 19.Shamala T. R., Chandrashekar A., Vijayendra S. V. N. and Kshama L. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J. of Appl. Microbiol. 2003, 94, 369–374 20.Wu H.-A., Shyan S. D. and Lee C.-Y. Rapid differentiation between short-chain-length and medium-chain-length polyhydroxy alkanoate accumulating bacteria with spectrofluorometry. J. of Micribiol. Meth. 2003,53 131– 135. 21.Patrick G. W., Guy de Roo, and Kevin E O’C. Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 2005, 71(4):2046–2052. 22.Verlinden R. A. J., Hill D J., Kenward M. A., Williams C. D. and Radecka I. Bacterial synthesis of biodegradable polyhydroxy- alkanoates. J. Appl. Microbiol. 2007, 102: 1437-1449. 23.Ho I.-C., Yang S.-P., Chiu W.-Y. and Huang S.-Y. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. I. J of Biological Macromolecules. 2007,40:112–118. 24.Suzette M. A., María A. A. and Emilio D. Bacterial Polyesters Produced by Pseudomonas oleovorans Containing Nitrophenyl Groups. Macromolecules. 1999, 32(9): 2889-2895. 25.Yoshiharu D. and Chikara A. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy- omega.-chloroalkanoates. Macromolecules. 1990, 23 (15), pp 3705–3707. 26.Beccari M., Dionisi D., Guikiani A., Majone M. and Ramadori, R. Effect of different carbon sources on aerobic storage by activated sludge. Water Sci. Technol.2002, 45 (6), 157– 168. 27.Dionisi D., Majone M., Tandoi V. and Beccari M., .Sequencingbatch reactor: influence of periodic operation on performance of activated sludge in biological wastewater treatment. Ind. Eng. Chem. Res.2001, 40:5110–5119. 28.Dionisi D., Majone M., Ramadori R. and Beccari, M. Thestorage of acetate under anoxic conditions. Water Res. 2001, 35:2661–2668. 29.Dionisi D., Majone M., Papa V. and Beccari. M. Biodegradable- polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol.Bioeng.2004, 85 (6), 569–579. 30.Dionisi D., Majone M., Miccheli A., Puccetti C.and Sinisi, C. Glutamic acid removal and PHB storage in the activate sludge process under dynamic conditions. Biotechnol. Bioeng. 2004, 86 (7):842–851. 31.Aimi S., Scale up of biopolymer (PHB) fermentation from 500ml shake flasks to 2L stirred tank fermentor. Undergraduates Project Report (PSM) thesis, Universiti Malaysia Pahang. 2009 32.Enrico G., Murray M.-Y. and Yusuf C. Fermentation optimization for the production of poly (b-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology. 1999, 25:132–141. 33.Sudesh K. H. A. and Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 2000, 25: 1503-1555.
|