跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝秉宸
研究生(外文):Hsieh,Pingchen
論文名稱:以熱燈絲化學氣相沉積製備矽基薄膜太陽電池及特性分析
論文名稱(外文):Preparation and characterization of silicon-based thin film solar cell by hot-wire CVD
指導教授:連水養連水養引用關係
指導教授(外文):Lien,Shuiyang
口試委員:連水養黃俊杰林堅楊
口試委員(外文):Lien,ShuiyangHuang,JungjieLin,Jianyang
口試日期:2012-07-04
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:熱燈絲化學氣相沉積薄膜太陽電池拉曼光譜儀
外文關鍵詞:HWCVDthin film solar cellRaman spectrometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要採用自行開發之連續式熱燈絲化學氣相沉積(In-line Hot Wire Chemical Vapor Deposition, In-line HWCVD)製備矽基薄膜太陽電池,研究方向針對本質層改變流量比、燈絲溫度、基板溫度等參數,並以UV-光譜儀、掃描式電子顯微鏡、拉曼光譜儀、傅立葉紅外線光譜儀、表面輪廓儀,分析矽基薄膜太陽電池的光學、電性及結構的特性,並製備矽基薄膜太陽電池,探討其變數對太陽電池效率的影響。
實驗結果得知,實驗參數氫氣流量為0 (sccm)、矽甲烷流量為20 (sccm)、燈絲溫度為1500°C、改變基板溫為400°C時,有最佳的薄膜特性及元件效率,其沉積率為5.82 Å/s、能隙為1.69 eV、光暗電導比為3.64×104、結晶率為34%,元件開路電壓為0.65 V,短路電流為8.02 mA/cm2,填充因子為50%,轉換效率為2.61%。
In this study, a self-developed in-line hotwire chemical vapor deposition (HWCVD) system was used for preparing amorphous silicon films for thin-film solar cell applications. The gas flow rate, filament temperature and substrate temperature were varied during the deposition process. The optical, electrical and structural properties of the films were measured using UV-vis spectrometer, scanning electron microscope, Raman spectrometer and surface profiler.
The experiment results showed that a film with the best properties of band gap of 1.69 eV, photosensitivity of 3.64×104 and crystallinity of 34% could be deposited with a growth rate of 5.82 Å/s under following conditions: hydrogen gas flow rate of 0 sccm, silane gas flow rate of 20 sccm, filament temperature of 1500°C and substrate temperature of 400°C. Finally, as the film was applied to solar cell fabrication, the solar cell exhibited an open-circuit voltage of 0.65 V, a short-circuit current density of 8.02 mA/cm2, a fill factor of 0.5 and a conversion efficiency of 2.61 %.

目 錄
致謝.................................................................I
摘 要.................................................................II
ABSTRACT .................................................................III
目 錄.................................................................IV
表 目 錄.................................................................VIII
圖 目 錄.................................................................IX
第一章 緒論
1-1 前言.................................................................1
1-2 研究動機................................................................. 5
1-3 研究目的.................................................................8
1-4 論文架構.................................................................9
第二章 理論基礎與文獻回顧
2-1 太陽能電池原理.................................................................10
2-2 太陽電池等效電路.................................................................12
2-3 太陽電池電流-電壓(I-V)特性.................................................................14
2-3-1並聯電阻及串聯電阻對I-V特性影響.............................................................16
2-4非晶矽薄膜太陽電池.................................................................18
2-5化學氣相沉積薄膜沉積機制.................................................................21
2-6熱燈絲化學氣相沉積原理.................................................................23
2-7本論文研究相關文獻.................................................................24
第三章 實驗方法與步驟
3-1 實驗架構.................................................................28
3-2 實驗設計與實驗流程.................................................................29
3-2-1實驗設計.................................................................29
3-2-2實驗流程.................................................................30
3-3 實驗設備.................................................................32
3-3-1 連續式熱燈絲化學氣相沉積系統(In-Line HWCVD).............................................32
3-3-2 連續式多腔體濺鍍系統(In - line Sputter)...............................................36
3-4 分析儀器.................................................................40
3-4-1光學特性量測.................................................................40
3-4-1-1 紫外光/可見光吸收光譜儀 ( UV-visible)..................................................40
3-4-2 結構特性量測.................................................................42
3-4-2-1 表面輪廓儀 (α-step ).................................................................42
3-4-2-2 拉曼光譜儀 ( Raman spectroscopy, Raman ).................................................................43
3-4-2-3傅立葉轉換紅外光譜儀 ( Fourier-Transform Infrared Spectroscopy, FTIR ).................................................................45
3-4-2-4 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM).................................................................47
3-4-3 電性量測.................................................................50
3-4-3-1太陽光源模擬器(Solar Simulator)......................................................50
3-4-3-2光暗電導 (d、ph).................................................................52
第四章 結果與討論
4-1改變H2/SIH4稀釋比對薄膜特性及太陽電池影響.................................................54
4-1-1 沉積速率之影響.................................................................55
4-1-2 光學特性分析................................................................. 55
4-1-3 電性分析.................................................................56
4-1-4 結晶率分析.................................................................57
4-1-5 氫含量及結構因子分析.................................................................59
4-1-6 表面形貌.................................................................60
4-1-7 元件特性分析.................................................................62
4-2改變燈絲溫度對薄膜特性及太陽電池影響.......................................................64
4-2-1 沉積速率之影響.................................................................64
4-2-2 光學特性分析 .................................................................65
4-2-3 電性分析.................................................................66
4-2-4 結晶率分析.................................................................67
4-2-5 氫含量及矽結構因子分析................................................................. 69
4-2-6 表面形貌.................................................................70
4-2-7 元件特性分析................................................................. 72
4-3改變基板溫度對薄膜特性及太陽電池影響..........................................................74
4-3-1 沉積速率之影響.................................................................74
4-3-2 光學特性分析................................................................. 75
4-3-3 電性分析.................................................................76
4-3-4 結晶率分析.................................................................77
4-3-5 氫含量及矽結構因子分析................................................................. 79
4-2-6 表面形貌.................................................................80
4-3-7 元件特性分析 .................................................................81
第五章 結論.................................................................84
第六章 未來展望.................................................................86
參考文獻.................................................................87

表 目 錄
表2-1 PECVD 與 HWCVD機台特性比較.................................................................8
表3-1 HWCVD及台固定參數.................................................................29
表3-2 不同本質製程參數.................................................................29
表4-1 不同H2/SiH4稀釋比參數表.................................................................54
表4-2不同本質層氫氣/矽甲烷稀釋比矽薄膜太陽電池之參數表..............................................62
表4-3 不同燈絲溫度參數表.................................................................64
表4-4不同本質層燈絲溫度矽薄膜太陽電池之參數表.......................................................72
表4-5不同基板溫度參數表.................................................................74
表4-6不同本質層基板溫度矽薄膜太陽電池之參數表.......................................................82

圖 目 錄
圖1-1太陽能電池種類圖.................................................................2
圖2-1太陽能電池等效電路.................................................................12
圖2-2電池電流-電壓特性曲線圖 .................................................................15
圖2-3電池功率-電壓特性曲線圖................................................................. 15
圖2-4串聯電阻對太陽電池電流-電壓特性的影響........................................................16
圖2-5並聯電阻對太陽電池電壓-電流特性的影響.........................................................17
圖2-6串聯、並聯電阻對於電池電壓-電流特性的影響......................................................17
圖2-7並聯電阻(Rs)對太陽電池元件影響示意圖.........................................................18
圖2-8 非晶矽薄膜太陽能電池結構圖.................................................................19
圖2-9 薄膜沉積步驟分解圖.................................................................21
圖2-10熱燈絲化學氣相沉積法沉積薄膜機制圖..........................................................24
圖3-1 實驗架構圖.................................................................28
圖3-2 實驗流程圖.................................................................30
圖3-3本實驗室熱燈絲化學氣相沉積(HWCVD)系統實體圖.................................................32
圖3-4蓮蓬式的氣體噴灑頭實體圖.................................................................33
圖3-5燈絲與擋板裝置實體圖.................................................................34
圖3-6 HWCVD系統示意圖.................................................................35
圖3-7本實驗室連續式多腔體濺鍍(In - line Sputter)系統示意圖.......................................36
圖3-8本實驗室連續式多腔體濺鍍系統實體圖............................................................36
圖3-9紫外光/可見光吸收光譜儀 .................................................................41
圖3-10 UV-Visible光學能隙示意圖.................................................................41
圖3-11 α - step 量測示意圖.................................................................42
圖3-12本實驗室 α - step 機台實體圖..............................................................43
圖3-13結晶矽薄膜之拉曼光譜圖做分解示意圖...........................................................45
圖 3-14微結構因子分解示意圖.................................................................47
圖3-15 場發射掃描式電子顯微鏡.................................................................49
圖3-16 本實驗室太陽光能模擬器.................................................................51
圖 3-17 太陽光譜圖(AM1.5)................................................................. 52
圖4-1 不同氫氣/矽甲烷稀釋比與沉積速率之關係圖.....................................................55
圖4-2 不同氫氣/矽甲烷稀釋比與吸收係數及能隙關係圖..................................................56
圖4-3 不同氫氣/矽甲烷稀釋比與光電導、暗電導之分析圖..................................................57
圖4-4 不同氫氣/矽甲烷稀釋比之拉曼光譜圖............................................................58
圖4-5 不同氫氣/矽甲烷稀釋比與結晶率關係圖..........................................................58
圖4-6 不同氫氣/矽甲烷稀釋比之FTIR光譜圖...........................................................59
圖4-7 薄膜氫氣/矽甲烷稀釋比之氫含量及結構因子關係圖.................................................60
圖4-8不同氫氣/矽甲烷稀釋比(a) 0、(b) 0.5、(c) 1、(d) 1.5、(e )2、(f) 2.5表面形貌 SEM 圖.............61
圖4-9 不同本質層氫氣/矽甲烷稀釋比之元件轉換效率特性圖................................................63
圖4-10 不同燈絲溫度與沉積速率之關係圖..............................................................65
圖4-11不同燈絲溫度與吸收係數及能隙關係圖............................................................66
圖4-12 燈絲溫度與光電導、暗電導之分析圖............................................................67
圖4-13 不同燈絲溫度之拉曼光譜圖.................................................................68
圖4-14不同燈絲溫度與結晶率關係圖.................................................................68
圖4-15 不同燈絲溫度之FTIR光譜.................................................................69
圖4-16不同燈絲溫度之氫含量及結構因子關係圖.................................................................70
圖4-17不同燈絲溫度(a) 1500°C、(b) 1550°C、(c) 1600°C、(d) 1650°C、(e ) 1700°C、(f) 1750°C之表面形貌 SEM 圖.................................................................71
圖4-18不同本質層燈絲溫度之元件轉換效率特性圖.......................................................73
圖4-19 不同基板溫度與沉積速率之關係圖.............................................................75
圖4-20 不同基板溫度與吸收係數及能隙關係圖.........................................................76
圖4-21 不同基板溫度與光電導、暗電導之分析圖.......................................................77
圖4-22 不同基板溫度之拉曼光譜圖.................................................................78
圖4-23 不同基板溫度與結晶率關係圖.................................................................78
圖4-24 不同基板溫度之FTIR光譜圖.................................................................79
圖4-25不同基板溫度之氫含量及結構因子關係圖........................................................80
圖4-26不同基板溫度(a) 200°C、(b) 250°C、(c) 300°C、(d)350°C、(e )400°C、(f) 450°C表面形貌 SEM 圖...81
圖4-27 不同本質層基板溫度之元件轉換效率特性圖......................................................83
[1]黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳, "太陽電池",五南圖書出版有限公司,2008。
[2]毛信元, "以熱燈絲化學氣相沉積製作複晶矽薄膜及特性分析",國立中興大學材料工程學系,2005。
[3]逢垛生, "Operating Drincioles and System Applications of solar cell",五南圖書出版股份有限公司, 2009
[4]黃惠良, "太陽能電池",五南圖書出版股份有限公司, 2007
[5]R. E. I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solarcells,Modeling, Materials and Device Technology",Kluwer Academic Publishers, 1998.
[6]Green, M.A., "Photovoltaics:Coming of Age", 21st IEEE Photovoltaic Specialists Conference, pp. 1-8 , 1990.
[7]D. M. Chapin, C. S. Fuller, and G.L. Pearson, "A New Silicon p-n JunctionPhotocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys., vol. 25, pp. 676-677, 1954.
[8]David E. Carlson, "Amorphous silicon solar cells", IEEE Trans. On ElectronDevices, Vol.24,pp. 449-543, 1977.
[9]D.L. Staebler,C.R. Wronski, "Reversible Conductivity Changes in Discharge-Produced Amorphous Si",Appl. Phys. Lett,Vol.31 pp.292-294, 1977
[10]M. Ohring , "The materials science of thin film",Academic Press, 1992
[11]E.C. Molenbroek, "Deposition for hydrogenated amorphous silicon with the hot wire technique", Ph.D.,University of Colorado, 1995
[12]H. Wiesmann,A.k. Ghosh,T. Mc. Mahon,M. Strongin, "a-Si:H produced by high temperature thermal decomposition of silane",J.Appl.Phys.,Vol.50, pp. 3752-3754, 1979
[13]H. matsumura and H. Tachibana, "Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2",J.Appl.Phys,Vol.47, pp.833-835, 1985
[14]A.H. Mahan,J.Carapella,B.P.Nelson,R.S. Crandall, "Deposition of device quality,low H content amorphous silcon",J.Appl.Phys., Vol.69,pp. 6728-6730,1991
[15]H. Matsumura, "Formation of poly silicon film by catalytic chemical vapor deposition(Cat-CVD)method",J.Appl.Phys,Vol.30, pp.1522-1524,1985
[16]C. Lee, Y.S.Jung, S.W.Kwon, K.S.Lim, S.K.Kim, K.H.Yoon, J.S.Song, and I.J.Park, "The influence of various parameters on microcrystalline silicon films and solar cells by hot-wire CVD", Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003
[17]M.Kupich, D.Grunsky, P.Kumar, B.Schroder, "Preparation of microcrystalline single junction and amorphous-microcrystalline tandem silicon solar cells entirely by hot-wire CVD", Solar Energy Materials and Solar Cells, Vol.81, pp.141-146,2004.
[18]D.Das and K.Bhattacharya, "Characterization of the Si : H network during transformation from amorphous to micro- and nanocrystalline structures", Journal of Applied Physics, vol. 100, pp. ,2006
[19]Y.Mai, S.Klein, X.Geng , M.Hulsbeck , R.Carius , and F.Finger, "Differences in the structure composition of microcrystalline silicon solar cells deposited by HWCVD and PECVD : Influence on open circuit voltage",Thin Solid Films,Vol.501,pp.272, 2006
[20]T.H.Wang, E.Iwaniczko , M.R.Page, Q.Wang, Y.Xu , Y.Yan , D.Levi , L.Roybal ,R.Bauer, and H.M. Branz, "High-efficiency silicon heterojunction solar cells by HWCVD", Conf. Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4,Vol.2,pp.1439, 2007
[21]J.K.Rath , M.d.Jong , and R.E.I.Schropp , "Low temperature (< 100°C) fabrication of thin film silicon solar cells by HWCVD",Thin Solid Films ,Vol.516,pp. 751 , 2008
[22]H.Li, R.H.Franken , R.L.Stolk , J.A.Schuttauf , C.H.M. van der Werf , J.K.Rath , and R. E. I. Schropp, "On the development of single and multijunction solar cells with hot-wire CVD deposited active layer",J. Non-Crystalline Solids,Vol.354,pp.2445, 2008
[23]P.Q.Luo, Z.B.Zhou, K.Y.Chan, D.Y.Tang, R.Q.Cui, X.M.Dou, "Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition",Applied Surface Science, Vol.255, pp. 2910–2915, 2008
[24]T.Chen, Y.Huang , H.Wang, D.Yang , A.Dasgupta , R.Carius , Reinhard and F.Finger, "Microcrystalline silicon carbide thin films grown by HWCVD at different filament temperatures and their application in n-i-p microcrystalline silicon solar cells",Thin Solid Films,Vol.517,pp.3507, 2009
[25]H.sunayama ,K.Yamada ,M.Karaswa and K.Ishibash, "Preparation of poly-Si films by Cat-CVD for thin transistor",Thin Solid Film, Vol.430,pp. 226-229, 2003
[26]Z.Iqbal ,S.Veprek ,A.p.Webb ,P.Capezzuto, "Raman scattering from small particle size polycrystalline silicon",Solid State Commum,Vol.37,pp. 993-996,1981
[27]R.A.Street, "Hydrogenated amorphous silicon",Cambridge University Press,1991
[28]P.J.Zanzucchi, C.R.Wronski and D.E.Carlson, " Optical and photoconductive properties of discharge-produced amorphous silicon",J.Appl.Phys., vol.48, pp.5227-5236, 1977
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊