跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 04:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳欣諭
研究生(外文):Wu, HsinYu
論文名稱:矽薄膜太陽電池之背電極設計與特性分析
論文名稱(外文):Design And Characterization Of Back Electrode Applied For Silicon Thin Film Solar Cells
指導教授:連水養連水養引用關係
指導教授(外文):Lien, ShuiYang
口試委員:連水養吳家豪林堅楊
口試委員(外文):Lien, ShuiYangWu, ChiaHaoLin, JianYang
口試日期:2012-07-04
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:矽薄膜太陽能電池鋁鈦背電極歐姆接觸
外文關鍵詞:Thin film solar cellsAlTi back contactOhmic contacts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
  本研究主要利用DC磁控濺鍍系統製備不同金屬材料,影用於薄膜太陽電池之背電極(Ag、AlTi、AlCrTi),並調變濺鍍功率、氬氣流量以及製程壓力,經由Four point、UV-Visible、SEM等量測分析,對其光電特性及材料結構進行分析,再採用Tracepro 光學模擬軟體分析其反射率,探討其光學性質。分別利用鋁鈦金屬層(AlTi) 與鋁鉻鈦金屬層(AlCrTi) 作為氧化鋅共摻雜鋁鎵薄膜(ZnO:AlGa) 之歐姆接觸電極,經由傳輸線模型量測法(TLM),量測出鋁鈦薄膜最低的接觸電阻值為1.57×10-3 ohm;鋁鉻鈦薄膜最低之接觸電阻為2.9×10-3 ohm。
  最後將最佳沉積條件之鋁鈦薄膜作為背電極,可得到非晶矽薄膜太陽能電池之開路電壓Voc = 0.856 V 、短路電流密度 Jsc = 14.43 mA/cm2 、填充因子 FF = 0.70 、轉換效率 η = 8.59 %;將最佳沉積條件之鋁鉻鈦薄膜作為背電極,可得到非晶矽薄膜太陽能電池之開路電壓Voc = 0.849 V, Jsc = 14.1 mA/cm2, FF = 66.6% 以及轉換效率η =7. 97%。 此外,實驗結果顯示使用鋁鈦薄膜可取代銀薄膜,達到降低非晶矽薄膜太陽能電池之製備成本(Cost down)。

  In this study, different back contact (Ag, AlTi, AlCrTi) were deposited by DC magnetron sputtering under different power, Ar gas flow rate and pressure. The effect of sputtering deposition parameters on optical, electrical and structural properties of back contact was carried out by four-point probe method, UV-vis spectrometer and scanning electron microscope. This research also adopted the thin film optical simulation software, TracePro, to find the suitable material for reflection layer, and investigate the optical properties. The results showed that using Ag, AlTi and AlCrTi as the electrode of GAZO shows ohmic characteristics. A low contact resistance of 1.57×10-3 ohm for the AlTi back electrode was observed by the Transmission Line Model (TLM) system.
  After optimizing the deposition parameters of AlTi thin films as a back contact for silicon thin film solar cells, the best solar cell showed the performance of an open-circuit voltage Voc of 0.856 V, short-circuit current density Jsc of 14.43 mA/cm2, fill factor of 0.70 and maximum efficiency of 8.59%. The AlTi back contact was suitable to replace Ag back contact for the production cost down in silicon thin film solar cell fabrication.

第一章緒論 1
1-1前言 1
1-1-1太陽能電池概論 1
1-1-2太陽能電池產業發展 2
1-1-3薄膜太陽能電池 4
1-2研究動機 7
1-3研究目的 8
1-4論文架構與研究內容 8
第二章 理論基礎 10
2-1 太陽能電池工作原理 10
2-1-1 太陽能電池等效電路 10
2-1-2 太陽能電池I-V 曲線特性 12
2-1-3 太陽能電池量子效率 (QUANTUM EFFICIENCY) 15
2-2 非晶矽薄膜太陽能電池基礎 16
2-3 透明導電膜 (TCO) 17
2-4 背電極材料介紹 18
2-5 金屬與半導體接觸理論 18
2-6 文獻回顧 23
第三章 實驗步驟與實驗設備 25
3-1 實驗方法與實驗步驟 25
3-1-1 實驗設計: 25
3-1-2 實驗流程 29
3-1-3 實驗設計 30
3-2 實驗製程設備 31
3-2-1 超高頻電漿輔助化學氣相沉積 (VHF-PECVD) 31
3-2-2 連續式多腔體濺鍍系統 (IN-LINE SPUTTERING) 34
3-2-3 其他製程設備 37
3-3 特性量測設備 38
3-3-1光學特性量測 38
3-3-1-1 光纖耦合CCD 陣列光譜儀 38
3-3-2 電性量測 40
3-3-2-1 四點探針 40
3-3-2-2 傳輸線模型量測法 (TRANSMISSION LINE MODEL ,TLM) 41
3-3-3 薄膜結構分析 42
3-3-3-1 Α-STEP PROFILER 42
3-3-3-2 場發射掃描式電子顯微鏡 (FE-SEM) 43
3-3-4 元件特性量測 45
3-3-4-1太陽光源模擬器 (SOLAR SIMULATOR) 45
3-3-4-2 外部量子效率量測儀 (EXTERNAL QUANTUN EFFICIENCY) 46
第四章 特性量測與元件分析 47
4-1 ALTI薄膜光學特性分析 47
4-1-1 製程功率對ALTI 之影響 47
4-1-2 製程壓力對ALTI 之影響 50
4-1-3氬氣流量對ALTI 之影響 52
4-2 ALTI薄膜電性量測分析 54
4-2-1 製程功率對ALTI 之影響 55
4-2-2 製程壓力對ALTI 之影響 56
4-2-3 氬氣流量對ALTI 之影響 57
4-3 ALTI/GAZO接面特性分析 58
4-3-1 製程功率對ALTI/GAZO 接面特性之影響 58
4-3-2 製程壓力對ALTI/GAZO 接面特性之影響 59
4-3-3 氬氣流量對ALTI/GAZO 接面特性之影響 60
4-4 ALTI 背電極應用於矽薄膜太陽電池之元件特性分析 62
4-4-1 製程功率對ALTI 背電極元件效率之影響 62
4-4-2 製程壓力對ALTI 背電極元件效率之影響 65
4-4-3 氬氣流量對ALTI 背電極元件效率之影響 67
第五章 ALCRTI 薄膜特性量測與元件分析 70
5-1 ALCRTI薄膜光學特性分析 70
5-1-1 製程功率對ALCRTI 之影響 71
5-1-2 製程壓力對ALCRTI 之影響 73
5-1-3 氬氣流量對ALCRTI 之影響 74
5-2 ALCRTI薄膜電性量測分析 76
5-2-1 製程功率對ALCRTI 之影響 77
5-2-2 製程壓力對ALCRTI 之影響 78
5-2-3 氬氣流量對ALCRTI 之影響 79
5-3 ALCRTI/GAZO接面特性分析 80
5-3-1 製程功率對ALCRTI/GAZO 接面特性之影響 80
5-3-2 製程壓力對ALCRTI/GAZO 接面特性之影響 81
5-3-3 氬氣流量對ALCRTI/GAZO 接面特性之影響 82
5-4 ALCRTI 背電極應用於矽薄膜太陽電池之元件特性分析 84
5-4-1 製程功率對ALCRTI 背電極元件效率之影響 84
5-4-2 製程壓力對ALCRTI 背電極元件效率之影響 87
5-4-3 氬氣流量對ALCRTI 背電極元件效率之影響 89
第六章 結論 91
第七章 未來展望 93


[7] 李嗣涔, 管傑雄, 孫台平, “半導體元件物理”, 三民書局, 台北(1995)。
[24] 陳禹佑、林明憲、吳志強、曹春暉,"Cr-Fe-Co-Ni-Cu-Al 六元高熵合金薄膜微結構研究",中國材料科學學會,(2002)。
[1]A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll,C. Droz and J. Bailat, "Thin film silicon and solar cell technology", Progress in photovoltaics: Research and applications Vol. 12 (2004); pp. 1~30.
[2]O. Schultz, S. W. Glunz and G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20 % efficiency”, Progress in Photovoltaics: Research and Applications Vol. 12 (2004); pp. 553~558.
[3]J. Meier, J. Sitznagel, U. Kroll, C. Bucher, S. Fay and T. Moriarty, “Potential of amorphous and microcrystalline silicon solar cells”, Thin Solid Films Vol. 451–452 (2004); pp. 518~524.
[4]T. Takamoto, M. Yamaguchi, S. J. Taylor, M. J. Yang, E. Ikeda and H. Kurita, “Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells”, Solar Energy Materials and Solar Cells Vol. 58 (1999); pp. 265~276.
[5] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Applied Physics Letters Vol. 90 (2007); pp. 183516-1~3.
[6] D. K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons Inc, New York (1998).
[8] S. M. Sze, “Physics of Semiconductor Devices”, John Wiley & Sons Inc, New York (1981).
[9] E. H. Rhoderick and R. H. Willian, “Metal-Semiconductor Contacts”, Oxford Science Publiscations, Oxford (1988).
[10] R. Kaplan, B. Kaplan, S.S. Hegedus, “A comparative study of photoconductivity and carrier transport in a-Si:H p–i–n solar cells with different back contacts”, Solid-State Electronics Vol. 54 (2010); pp. 22~27.
[11] K.S. Kao, D.L. Cheng, S.H. Chang, P.T. Hsieh, H.S. Chin, H.K. Lin, “Effect of mesh patterning with UV pulsed-laser on optical and electrical properties of ZnO/Ag–Ti thin films”, Applied Surface Science Vol. 256 (2010); pp. 7446~7450.
[12] A. Čampa, J. Krč, F. Smole, M. Topič, “Potential of diffraction gratings for implementation as a metal back reflector in thin-film silicon solar cells”, Thin Solid Films Vol. 516 (2008); pp. 6963~6967.
[13] H. M. Lee, Y. J. Kim, “Preparation of size-controlled fine Al particles for application to rear electrode of Si solar cells”, Solar Energy Materials & Solar Cells Vol. 95 (2011); pp. 3352~3358.
[14] M.C. Wang, T.C. Chang, S.W. Tsao, Y.Z. Chen, S.C. Tseng, T.C. Hsu, D.J. Jan, C.F. Ai, J.R. Chen, “n+-Doped-layer free amorphous silicon thin film solar cells fabricated with the CuMg alloy as back contact metal”, Solid-State Electronics Vol. 57 (2011); pp. 73~75.
[15] I. Perez-Quintana, A. Martel, L. Hernandez, “Comparative study of metal-semiconductor contact degradation by current pulses on silicon solar cells with two contact types”, Solid-State Electronics Vol. 45 (2001); pp. 2017~2021.
[16] J. S. Cho, S. Baek, K. H. Yoon, “Enhancement of light trapping by textured back electrodes in tandem micromorph n-i-p silicon thin film solar cells”, Current Applied Physics Vol. 11 (2011); pp. S2~S7.
[17] X.D. Zhang, Y. Zhao, Y.T. Gao, F. Zhu, C.C. Wei, X.L. Chen, J. Sun, G.F. Hou, X.H. Geng, S.Z. Xiong, “Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells”, Journal of Non-Crystalline Solids Vol. 352 (2006); pp. 1863~1867.
[18] Y. Tawada, M. Kondo, H. Okamoto and Y. Hamakawa, “Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells”, Solar Energy Material and Solar Cells Vol. 6 (1982); pp.299~315.
[19] Y. Tawada, H. Okamoto and Y. Hamakawa, “a‐SiC:H/a‐Si:H heterojunction solar cell having more than 7.1% conversion efficiency”, Applied Physics Letters Vol. 39 (1981); pp. 237~239.
[20] Alessandro Fantoni, Manuela Viera and Rodrigo Martins, “Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation”, Solar Energy Material and Solar Cells Vol. 73 (2002); pp. 151~162.
[21] A. Gordijn, “Microcrystalline silicon for thin film solar cells”, Utrecht University, Netherlands (2005).
[22] J. S. Foresi and T. D. Moustakas, “Metal contacts to gallium nitride”, Applied Physics Letters Vol. 62 (1993); pp. 2859~2861.
[23] J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN”, Applied Physics Letters Vol. 86 (2005); pp. 062104~062106.
[25] S. P. Murarka, “Multilevel interconnections for ULSI and GSI era “, Materials Science and Engineering Vol. 19 (1997); pp. 87~151.
[26] K.Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Applied Physics Letters Vol. 68 (1996); pp. 403~405.
[27] Y. Tetsuya and K. Y. Hiroshi, “Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO”, Japanese Journal of Applied Physics Vol. 38 (1999); pp. 166~169.
[28] E. V. Kalinina, N. I. Kuznetsov, A. I. Babanin, V. A. Dmitriev and A. V. Shchukarev, “Structural and electrical properties of Schottky barriers on n-GaN”, Diamond and Related Materials Vol. 6 (1997); pp. 1528~1531.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top