跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志維
研究生(外文):Chang, Chih-Wei
論文名稱:利用液相沉積法低溫製備透明金屬氧化物薄膜電晶體之研究
論文名稱(外文):A Study For Transparent Metal Oxide Thin Film Transistors By Low Temperature Liquid Phase Deposition Process
指導教授:黃俊杰黃俊杰引用關係
指導教授(外文):Huang, Jung-Jie
口試委員:何偉友趙慶勳
口試委員(外文):Ho, Wei-YuChao, Ching-Hsun
口試日期:2012-07-24
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:液相沉積法薄膜電晶體摻雜二氧化鈦硝酸銦
外文關鍵詞:Liquid Phase DepositionThin Film TransistorsDopingTitanium OxideIndium Nitrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要為研究高品質、低成本金屬氧化物半導體製程技術。目前為止,有較少的文獻使用液相沉積法製備金屬氧化物半導體。此製程有許多優點,如成本低,均勻性及階梯覆蓋性好,附著力佳,容易控制的化學劑量,大面積及批次生產。
利用液相沉積法製程以六氟鈦酸銨及硼酸製備二氧化鈦半導體薄膜,並摻雜硝酸銦提高載子遷移率,再使用熱蒸鍍製程搭配金屬光罩鍍上鋁金屬作為電極,以HP-4145B半導體量測儀分析薄膜電晶體的轉換特性。以液相沉積法製備出二氧化鈦摻銦之薄膜,並證明硝酸銦有效摻雜至二氧化鈦使能隙降低至2.95 eV,其平均穿透率為74.08 %,而載子遷移率高達7.45 cm2/Vs。最後製備成逆交錯型元件,其載子遷移率μ為0.799 cm2/Vs、臨界電壓-5.27 V、次臨界擺幅0.13 V/dec、開關電流比1.39 x 106。
The goal of this study is to develop high quality and low cost metal oxide semiconductor fabrication technology. Up to now, there is less study in metal oxide semiconductor TFTs by liquid phase deposition (LPD) process. It has many advantages like low cost, good uniformity and adhesion, easy stoichiometry control, and a potential of large scale batch-type mass production.
In preparation of indium titanium oxide thin film transistors, ammonium hexafluoro-titanate and boric acid were used as materials to produce titanium oxide semiconductor films with the liquid phase deposition method. In this process, indium nitrate was doped to improve the mobility. Then, aluminum electrodes were further plated on these films via a shadow mask with the thermal evaporation. The transfer characteristics of TFT device were measured by an HP-4145B semiconductor parameter analyzer. Finally, we proved that, in this preparation of TiO2 by LPD, indium nitrate is an effective doping to the TiO2. This doping made the optical energy gap down to 2.95 eV, and the average transmittance is 74.08 %, the Hall mobility as high as 7.45 cm2/Vs. The final product is a type of inverse staggered, the μsat is 0.799 cm2/Vs, threshold voltage is -5.27 V, subthreshold swing is 0.13 V/dec, and on/off current ratio is 1.39 x 106.
摘要..............................I
Abstract.........................II
目錄..............................III
圖目錄............................VI
表目錄............................VIII
第一章 緒論......................1
1-1 前言......................1
1-2 薄膜電晶體種類..............3
1-3 研究之動機.................4
1-4 研究之目的.................7
第二章 基礎理論文獻回顧............8
2-1 文獻回顧...................8
2-2 產業現況..................13
2-3 液晶顯示器之基礎理論........15
2-4 薄膜液晶顯示器種類..........16
2-5 薄膜電晶體的結構與作動原理...18
第三章 實驗流程與方法.............20
3-1 實驗流程.....................20
3-2 實驗藥品.....................22
3-3 實驗方法.....................23
3-3-1 六氟鈦酸銨溶液製備...........23
3-3-2 硼酸溶液製備................23
3-3-3 摻雜溶液製備................23
3-3-4 玻璃基板清洗................23
3-3-5 LPD TiO2:In薄膜...........24
3-3-6 薄膜退火處理................24
3-4 薄膜電晶體元件製備.............25
3-4-1 製備金屬光罩................25
3-4-2 絕緣層製備..................25
3-4-3 黃光微影....................25
3-4-4 製備源極和汲極...............26
3-5 TiO2:In薄膜與元件分析.........27
3-6 實驗設備......................28
3-7 分析設備......................31
第四章 結果與討論.................38
4-1 實驗參數.......................38
4-2 掃描式電子顯微鏡分析.............39
4-3 霍爾量測儀分析.................47
4-4 X光繞射分析...................49
4-5 UV-Visible穿透率與能隙探討.....51
4-6 化學分析電子光譜儀之分析........54
4-7 薄膜電晶體之元件特性分析........61
4-7-1 絕緣層特性分析..............61
4-7-2 元件特性分析................63
第五章 結論.....................67
參考文獻..........................69

[1]J. J. Huang, Y. P. Chen, Y. S. Huang, G. R. Hu, C. W. Lin, Y. J. Chen, P. F. Lee, C. J. Tsai, C.J. Liu, H. C. Yao, K. Y. Ho, B. C. Kung, S. Y. Peng, C. M. Leu, J. Y. Yan, S. T. Yeh, H. L. Pan, H. C. Cheng, and C. C. Lee,“A 4.1-in. flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate” SID, 2009, pp.866-869.
[32]D. Y. Cho, J. Song, C. S. Hwang, W. S. Choi, T. W. Noh, J. Y. Kim, H. G. Lee, B. G. Park, S. Y. Cho, S. J. Oh, J. H. Jeong, J. K. Jeong, Y. G. Mo,“Electronic structure of amorphous InGaO3(ZnO)0.5 thin films” Thin Solid Films, Vol. 518, 2009, pp.1079-1081.
[4]T. C. Wong, J. S. Wu, H. C. Ting, ERSO/ITRI “Century of transparent TFT” 2005.
[6]R. R. Thomas, Langmuir, Vol. 19, 2003, 5763-5765.
[8]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin film transistor fabricated in single-crystalline transparent oxide semiconductor” Science, Vol. 300, 2003, pp.1269-1272. 
[9]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors” Nature, Vol. 432, 2004, pp.488-492.
[10]E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C.N. Carvalho, R. Martins, “High field-effect mobility zinc oxide thin film transistors produced at room temperature” Journal of Non-Crystalline Solids, Vol. 338-340, 2004, pp.806-809.
[11]B. Sun, H. Sirringhaus, “Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods” Nano. Lett., Vol. 5, No. 12, 2005, pp.2408-2413.
[12]H. C. Cheng, C. F. Chen, C. C. Lee, “Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method” Thin Solid Films, Vol. 498, 2006, pp.142 -145.
[13]L. Chensha, L. Yuning, W. Yiliang, B. S. Ong, R. O. Loutfy, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film” Journal of Applied Physics, Vol. 102, 2007, 076101.
[14]J. W. Park, S. Yoo, “New n-type TiO2 transparent active channel TFTs fabricated with a solution process” IEEE Electron Device Lett., Vol. 29, No 7, 2008, pp.724-727. 
[15]C. Y. Tsay, H. C. Cheng, M. C. Wang, P. Y. Lee, C. F. Chen, C. K. Lin, “Performance of sol-gel deposited Zn1-xMgxO film used as active channel layer for thin-film transistors” Surface & Coatings Technology, Vol. 202, 2007, pp.1323-1328.
[16]R. Hayashi, A. Sato, M. Ofuji, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, “Improved amorphous In-Ga-Zn-O TFTs” SID, 2008, pp.621-624. (Canon)
[17]W. S. Shih, S. J. Young, L. W. Ji, W. Water, T. H. Meen, K.T. Lam, J. Sheen, W. C. Chu, “Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering” Journal of physics and chemistry of Solids, 2010, Vol. 71, pp.1760-1762.
[18]J. H. Lee, D. H. Kim, D. J. Yang, S. Y. Hong, K. S. Yoon, P. S. Hong, C. O. Jeong, H. S. Park, S. Y. Kim, S. K. Lim, S. S. Kim, K. S. Son, T. S. Kim, J. Y. Kwon, S. Y. Lee, SID, 2008, pp.625-628. (Samsung)
[19]M. H. Lee, C. C. Shih, J. S. Chen, W. M. Huang, F. Y. Gan, Y. C. Shih, C. X. Qiu, I-Shiang Shih, “Excellent performance of indium-oxide-based thin-film transistors by DC sputtering” SID, 2009, pp.191-193. (AUO)
[20]R. Hoffman, T. Emery, B. Yeh, T. Koch, W. Jackson , “Zinc indium oxide thin-film transistors for active-matrix display backplane” SID, 2009, pp.288-291. (HP)
[21]M. K. Ryu, K. B. Park, J. B. Seon, J. Park, I. S. Kee, Y. G. Lee, S. Y. Lee, “AMOLED driven by solution processed oxide semiconductor TFT” SID, 2009, pp.188-190. (Samsung)
[22]H. H. Lu, H. C. Ting, T. H. Shih, C. Y. Chen, C. S. Chuang, Y. Lin, “32-inch LCD panel using amorphous indium gallium zinc oxide TFTs“ SID, 2010, pp.1136-1138. (AUO)
[23]H. S. Seo, J. U. Bae, D. W. Kim, C. Ryoo, I. K. Kang, S. Y. Min, Y. Y. Kim, J. S. Han, C. D. Kim, Y. K. Hwang, I. J. Chung, “Development of highly stable a-IGZO TFT with TiOx as a passivation layer for active-matrix display” SID, 2010, pp.1132-1135. (LG)
[24]D. H. Son, D. H. Kim, S. J. Sung, E. A. Jung, J. K. Kang, Curr. “Development of Highly Stable a-IGZO TFT with TiOx as a Passivation Layer for Active-Matrix Display“ SID, Vol. 41, 2010, pp.1132-1135.
[25]Y. Choi, G. H. Kim, W. H. Jeong, H. J. Kim, B. D. Chin, J. Yu , “Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors” Thin Solid Films, Vol. 518, pp.2010, pp.6249-6252.
[26]H. W. Zan, W. W. Tsai, C. H. Chen, C. C. Tsai, H. F. Meng, “High performance a-IGZO TFT with nano-dots doping” SID, 2011, 28-31.(NTCU)
[30]Cherie R. Kagan (Editor) Paul Andry (Editor), Thin Film Transistors, pp. 2003.
[27]黃桂武“軟性平面顯示器之印製有機半導體材料技術”工業材料雜誌, 287期, 2010, pp.70-80.
[28]薄膜電晶體液晶顯示器-原理與實務, 王木俊, 劉傳璽著, 新文京開發出版股份有限公司.
[29]陳茂成, 工業技術研究院電子工業研究所, 液晶顯示器產品專題研究, 1994.
[31]TFT-LCD面板的驅動與設計,戴亞翔著,五南出版社.
[7]李岳樺, 莊坤霖, 林家興, 工業材料雜誌, 297期, 2011, pp.152-162.
[5]胡應強, 張文陽, 邱以泰, 朱俊勳, 何宗哲, 化工技術, 第14卷第9期, 2006, pp.144-151.
[2]余王傑, 工研院材化所, 軟性無機半導體薄膜材料技術近況發展, 2007.
[3]J. L. Chen, InGaZnO4非晶透明導電薄膜的物性研究與以其製備的薄膜電晶體特性, 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top