跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡嘉航
研究生(外文):Chia-Hang Tsai
論文名稱:非平衡磁控濺射TiAlBN之製程與特性研究
論文名稱(外文):Study on the Processing and properties of TiAlBN coatings by Unbalanced Magnetron Sputtering
指導教授:何偉友何偉友引用關係
指導教授(外文):Wei-Yu Ho
口試委員:謝耀南張銀祐
口試委員(外文):Yaw-Nan ShiehYin-Yu Chang
口試日期:2012-07-19
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:氮化鈦鋁硼濺射鍍膜
外文關鍵詞:TiAlBNsputteringcoatings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用非平衡磁控濺射鍍製TiAlBN奈米多層膜,進行製程與特性研究,主要探討微結構、機械性質與其應用端,並採用業界機台Leybold 600SP沉積TiAlBN比較不同機台之差異。

製程採多層膜設計鍍製TiAlBN,第一階段為未通入反應氣體並改變AlB2靶功率300W、400W、500W,第二階段是以第一階段為製程再通入N2,第三階段則為第二階段鍍製後通入 10分鐘C2H2進行分析與比較。實驗選用靶材為Al33B67與Ti圓形靶,反應氣體為N2和C2H2,而以上膜層皆鍍製20分鐘Ti介層以增加附著性。

微結構選用儀器XRD、SEM、ESCA、AFM,包含低掠角判定其結晶優選方位;表面與斷面形貌;元素鍵結組態,機械性質方面採用:洛氏壓痕判定附著性、奈米壓痕儀檢測硬度、磨耗試驗利用鎢鋼球與玻璃球對磨。

研究結果顯示,功率的增加有助於膜厚的提升,而功率的提升Ra值也跟著提升,TiAlB與TiAlBN仍有極低的Ra值,當N2與C2H2的通入,導致薄膜硬度下降,但隨著N2與C2H2的通入使得磨潤性提升。

This thesis is to study the process and properties of the TiAlBN multilayer by using the unbalanced magnetron sputtering system. The content of this study is focused on the microstructure, mechanical properties and its potential application. Two different sputtering systems, home-made and Leybold 600SP were compared with TiAlBN coatings.

The process were divided into three sessions, including the synthesis of TiAlB multilayer coatings, which were conducted with the variation of AlB2 magnetron power of 300W, 400W, 500W. The second session is the process with introduction of N2 gas, which leads to TiAlBN multilayer coatings. The third session is carried out by following the second session with extra introduction of C2H2 gas on top formed as TiAlBCN coatings. The Al33B67 and Ti circular targets were face to face installed in the chamber.

Microstructures of the studied coatings were examined by XRD for the crystal preferred orientation, SEM for surface morphology and the fractured sections, ESCA for element binding configuration, and AFM. The mechanical properties was investigated by using Rockwell indentation to determine the adhesion, nanoindenter testing for the hardness, the wear test of grinding tungsten steel balls and glass balls.

The results show that with increasing magnetron power density contributes to the increase of film thickness. TiAlB and TiAlBN exhibits the low Ra value. Introduction of N2 and C2H2 gases, respectively, leads to the decrease of film hardness, but improve the tribological behaviors.

摘要…………………………………………………………I
總目錄…………………………………………………III
圖目錄………………………………………………… VI
表目錄…………………………………………………XI
第一章 前言…………………………………………………1
第二章 文獻回顧………………………………………2
2.1 非平衡磁控濺射 2
2.2 氮化物 4
2.3 BN 4
2.4 TiB2 5
2.5 TiBN 5
2.6 TiBCN 7
2.7 TiAlN/AlTiN薄膜 8
2.8 多層膜設計 11
第三章 實驗方法 13
3.1 非平衡磁控濺射鍍膜系統 13
3.2 試片選用及前處理 14
3.3 實驗設計與流程 14
3.4 薄膜分析與檢測 19
3.4.1 X光繞射儀 19
3.4.2 場發射掃描式電子顯微鏡 21
3.4.3  X射線光電子能譜儀 22
3.4.4 附著力測試 24
3.4.5 奈米硬度測量 25
3.4.6 磨耗試驗分析 26
3.4.7 原子力顯微鏡 27
第四章 結果與討論 28
4.1 TiAlB 薄膜改變功率之影響 28
4.1.1 SEM表面形貌觀察 28
4.1.2 AFM表面形貌與粗糙度量測 29
4.1.3 SEM斷面形貌觀察 30
4.1.4 X-ray繞射分析 32
4.1.5 附著性測試 33
4.1.6 奈米壓痕 34
4.1.7 磨耗實驗 35
4.1.8 XPS分析 39
4.2 TiAlBN 薄膜通入氮元素之影響 40
4.2.1 SEM表面形貌觀察 40
4.2.2 AFM表面形貌與粗糙度量測 41
4.2.3 SEM斷面形貌觀察 42
4.2.4 X-ray繞射分析 44
4.2.5 附著性測試 45
4.2.6 奈米壓痕 46
4.2.7 磨耗實驗 47
4.2.8 XPS分析 51
4.3 TiAlBCN 薄膜通入10分鐘乙炔之影響 52
4.3.1 SEM表面形貌觀察 52
4.3.2 AFM表面形貌與粗糙度量測 53
4.3.3 SEM斷面形貌觀察 54
4.3.4 X-ray繞射分析 56
4.3.5 附著性測試 57
4.3.6 奈米壓痕 58
4.3.7 磨耗實驗 59
4.3.8 XPS分析 63
4.4採用業界機台鍍製TiAlBN 薄膜 64
4.4.1 SEM表面形貌觀察 64
4.4.2 SEM斷面形貌觀察 65
4.4.3 X-ray繞射分析 67
4.4.4 附著性測試 68
4.4.5 磨耗實驗 69
第五章 結論 70
參考文獻 71

中文
1.薄膜工程學(二版)/王建義,全華科技,2006
43.Whiston 著 李志甫編譯 X-射線法 高立圖書股份有限公司出版


英文
2.C.Rebholz, H. Ziegele, A. Levland, A. Matthews, J. Vac. Sci. Technol., A16(5)(1998)2851.
3.U. Goetz, Innovation in ceramics, Sintec-Group, Halblech, Germany, 2005. (www.sintec-keramik.com/sintec-en/evaporator-boats...properties.html).
4.J. Morales-Hernandez, L. Garcia-Gonzales, J. Munoz-Saldana, F.J. Espinoza-Beltran, Vacuum 76(2004)161.
5.R.A. Andrievski, G.V. Kalinnikov, Surf. Coat. Technol. 142-144(2001)573.
6.C. Rebholz, A. Leyland, A. Matthews, Thin Solid Films 343-344(1999)242.
7.Window B, Savvides N, Charged Particle Fluxes from Planar Magnetron Sputtering Sources, J Vac Sci Technol A 4 (1986) 196-202.
8.P.J. Kelly*, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159-172.
9.J. Musil , Low-pressure magnetron sputtering, Vacuum/volume 50(3,4) (1998)363-372.
10.Pi-Chuen Tsai, Wen-Jauh Chen, Jun-Hao Chen, Chi-Lung Chang , Deposition and characterization of TiBCN films by cathodic arc plasma evaporation, Thin Solid Films 517 (2009) 5044–5049.
11.ABTC TECHNOLOGY CO., LTD. http://www.house119.com.tw/y01001/
12.Shuichi Watanabe, Shojiro Miyake, Masahiko Jin, Masao Murakawa, Frictional behavior ofcubic BN films sliding against DLC, Tribology International 37 (2004) 923–927.
13.S. Watanabe, S. Miyake, M. Murakawa, Friction behavior of amorphous-BN-cubic-BN dual-layered film, Surface and Coatings Technology 76-77 (1995) 600-603.
14.Y.K. Yap *, T. Aoyama, Y. Wada, M. Yoshimura, Y. Mori, T. Sasaki, Growth of adhesive c-BN films on a tensile BN buffer layer, Diamond and Related Materials 9 (2000) 592–595.
15.T.P. Mollart, J. Haupt, R. Gilmore, W. Gissler, Tribological behaviour of homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 multilayer coatings, Surface and Coatings Technology 86-87 (1996) 231-236.
16.A.J. Horlock, D.G. McCarteny, P.H. Shipway, J.V. Wood, Thermally sprayed Ni(Cr)–TiB2 coating using powder produced by self-propagating high-temperature synthesis: microstructure and abrasive wear behavior,Mater. Sci. Eng, A336 (2002) 88–98.
17.Wang WM, Fu ZY, Wang H, Yuan RZ. Influence of hot pressing Sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J Eur Ceram Soc 22( 2002)1045–9.
18.Kim KH, Shim KB. The effect of lanthanum on the fabrication of ZrB2–Zr Ccomposites by spark plasma sintering. Mater Charact 50 (2003) 31–7.
19.L. Garc´ıa-Gonz´alez, J. Hern´andez-Torres , P.J. Garc´ıa-Ram´ırez , J. Mart´ınez-Castillo,A´ ngel Sauceda , A.L. Herrera-May , F.J.Espinoza-Beltra´n ,Journal of Materials Processing Technology 186 (2007) 362–366.
20.S.M. Aouadia, F. Namavarb, T.Z. Gorishnyya, S.L.Rohdea,Surface and Coatings Technology 160 (2002) 145–151.
21.J. Lin a, B. Mishra , J.J Moore , M. Pinkas , W.D. Sproul, Structure and properties of Ti–B–C–N nanocomposite coatings synthesized using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS), Surface & Coatings Technology 203 (2008) 588-593.
22.Jianliang Lin ,John J. Moore a, Brajendra Mishra a, Malki Pinkas , William D. Sproul, The structure and mechanical and tribological properties,of TiBCN nanocomposite coatings, Acta Materialia 58 (2010) 1554–1564.

23.M. Darabara, L. Bourithis , S. Diplas , G.D. Papadimitriou, A TiB2 metal matrix composite coating enriched with nitrogen: Microstructure and wear properties, Applied Surface Science 254 (2008) 4144–4149.
24.Single layer and multilayer wear resistant coatings of (Ti,Al)N:a review S. PalDey, S. C. Deevi.
25.Influence of bi-layer period thickness on the residual stress, mechanical and tribological properties of nanolayered TiAlN/CrN multi-layer coatings Chi-Lung Changa,_, Jui-Yun Jaob, Wei-Yu Hoa, Da-Yung Wangc.
26.S. PalDey, S. C. Deevi, Materials Science and Engineering, A342(2003)58.
27.B. Navinsek, P. Panjan, I. Milosev, Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures, Surface and Coatings Technology, 97 (1997)182.
28.Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering J.H.Hsieh, C. Liang, C.H. Yu, W. Wu.
29.Knotek M, Bo. hmer, T. Leyendecker, F. Jungblut, Mater. Sci. Eng, A105106(1988)481.
30.W. D. Munz J, Vac. Sci. Technol, A4(1986)2717.
31.Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique Seog-Young Yoon, Kwang O Lee, Sung Soo Kang, Kwang Ho Kim.
32.Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering V. K. William Grips, Harish C. Barshilia, V. Ezhil Selvi, K.S. Rajam.
33.ELID grinding and tribological characteristics of TiAlN filmK. Katahira, Y. Watanabe, H. Ohmori, T. Kato.
34.Raman chemical imaging of tribological nitride coated (TiN, TiAlN) surfaces Karim N. Jallad, Dor Ben-Amotz.
35.Improvement of the interfacial integrity of (Ti,Al)N hard coatings deposited on high speed steel cutting tools.
36.Multilayer TiAlN coatings with composition gradientR. Manaila, A. Devenyi, D. Biro, L. David, P.B. Barna, A. Kovacs.
37.Mechanical behavior of _Ti, Al/N coatings exposed to elevated temperatures and an oxidative environment E. SchiafferU, G. Kleer.
38.Oxidation behaviour of TiAlN coatings sputtered at low temperature Peter Panjan, Boris Navinsek, Miha C. ekada, Anton Zalar.
39.Atomic environment and interfacial structural order of TiAlN/Mo multilayers C.J. Tavares, L. Rebouta, J.P. Rivie're, T. Girardeau, P. Goudeau, E. Alves, N.P. Barradas.
40.Stress analysis and microstructure of PVD monolayer TiN and multilayer TiNy(Ti,Al)N coatings N.J.M. Carvalho, E. Zoestbergenl, B.J. Kooi, J.Th.M. De Hosson D.-Y. Wang, C.-L. Chang, K.-W. Wong, Y.-N.Li, W.-Y.Ho.
41.Microstructure and mechanical properties of (Al, Ti)(O,N)coatings prepared by reactive sputtering Yan Liu, Yunshan Dong, Wenji Zhao, Geyang Li.
42.Materials Science Of Thin Films, John L. Vossen (1991), Chapter 12,p.559-560.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top