跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王謹銘
研究生(外文):Jin-Ming Wang
論文名稱:高功率脈衝磁控濺鍍含鈦金屬類鑽碳膜之性質研究
論文名稱(外文):Study on Characterizations of Ti:DLC Films by High Power Impulse Magnetron Sputter Technology
指導教授:張奇龍張奇龍引用關係
指導教授(外文):Chi-Lung Chang
口試委員:吳宛玉張銀祐
口試委員(外文):Wan-Yu WuYin-Yu Chang
口試日期:2012-07-20
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:126
中文關鍵詞:高功率脈衝磁控濺射類鑽碳膜
外文關鍵詞:HiPIMSa-C:Ti
相關次數:
  • 被引用被引用:0
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本研究以高功率脈衝磁控濺射法(HiPIMS)沉積含鈦金屬之類鑽碳a-C:Ti奈米複層薄膜於鎢鋼、304不鏽鋼薄片、SKH9高速鋼、矽晶片基材上,利用掃描式電子顯微鏡、X光繞射儀、原子力顯微鏡來進行含鈦金屬類鑽探薄膜微結構、晶粒大小與殘留應力之分析;機械性質則使用維克氏硬度計、奈米壓痕儀、磨耗試驗機與高溫磨耗試驗機進行量測;結果顯示奈米壓痕試驗得到a-C:Ti試片硬度為8-15GPa之間,此值高於Ti薄膜。含鈦金屬類鑽碳a-C:Ti奈米複層薄膜相對鎢鋼球對磨下,其摩擦係數範圍在0.09-0.12之間。AFM表面粗度儀顯示試片表面粗糙度於1.7-5nm,並隨碳靶輸出功率有上升的趨勢。由Raman的研究結果顯示,在1 kW時ID/IG比值為最低,呈現較多的sp3鍵結與較高的硬度。當碳靶功率由1 kW增加至2.5 kW時,其ID/IG比值隨之增加,且薄膜由TiC轉變為a-C:Ti。從上述的結果可得知薄膜微結構、硬度、磨潤性與功率輸出,有密切之關係。
In this work, titanium-containing diamond-like carbon (Ti-DLC) thin films have been deposited using high power impulse magnetron sputtering (HiPIMS) in an argon atmosphere with graphite and titanium targets. The substrate rotated between two facing magnetron cathodes while different powers and impulse durations was applied to the graphite target. The bonding properties of Ti-DLC films were characterized by micro Raman. The results show that a lower value of ID/IG corresponds to a higher hardness value. Hardness and Young’s modulus were determined by a CSMTM nanohardness tester. The hardness (H) and Young’s modulus (E) are in the range of 11-15 GPa and 121-169 GPa, respectively, depending on the deposition conditions. Tribological testing of Ti-DLC films was conducted using a rotating type ball-on-disk apparatus in ambient condition. Results reveal that the as-deposited films have a lower coefficient of friction than that of DC sputtering process.
目 錄

中文摘要....................................................i

英文摘要....................................................ii

誌謝........................................................iii

目錄........................................................iv

表目錄......................................................vii

圖目錄......................................................viii

第一章 緒論................................................1
1 前言...................................................1
第二章 文獻回顧............................................5

2-1碳的形態及結晶構造........................................5
2-2含碳薄膜特性及分類........................................6
2-3拉曼光譜儀分析...........................................8
2-4離子轟擊效應............................................10
2-5 薄膜的結構與缺陷........................................11
2-6表面處理方法............................................14
2-6-1物理氣相沉積PVD...................................16
2-6-2化學氣相沉積CVD...................................17
2-7各種薄膜沉積技術優缺點比較................................18
2-8磁控濺鍍(Magnetron Sputtering).....................20
2-9封閉磁場與非封閉式磁控濺射系統.........................21
2-10高功率脈衝磁控濺鍍之特色(HiPIMS).....................23
2-10-1表面均勻性..................................24
2-10-2薄膜沉積率..................................26
2-10-3不同靶材能量供給方式的沉積率與沉積密度............27
2-10-4表面結構....................................29
2-10-5高功率脈衝與直流濺鍍之解離率比較.................30
2-10-6佔空比(duty cycle)..........................31

第三章實驗方法與步驟........................................32

3-1實驗設備...............................................32
3-2 材料選擇..............................................33
3-2-1 試片準備........................................33
3-2-2 試片前處理......................................35
3-3 實驗流程...............................................36
3-4 膜層設計與規劃..........................................37
3-4-1膜層設計.........................................37
3-4-2實驗參數.........................................38
3-4-3含鈦金屬類鑽探薄膜之沉積............................40
3-5分析與檢測方法...........................................41
3-5-1場發射掃描式電子顯微鏡(FE-SEM)......................41
3-5-2能量散佈光譜儀(EDS)...............................44
3-5-3 X光繞射儀(XRD)..................................45
3-5-4原子力顯微鏡(AFM).................................47
3-5-5顯微拉曼光譜儀....................................49
3-5-6奈米壓痕系統......................................51
3-5-7磨耗試驗機.......................................53
3-5-8高溫磨耗試驗.....................................54
3-5-9歐傑電子能譜.....................................55
3-5-10水接觸角分析....................................56
3-5-11刮痕試驗儀......................................58
3-5-12電漿質譜儀......................................59

第四章 結果與討論..........................................62

4-1傳統直流濺鍍與HiPIMS離化率比較............................63
4-2電壓電流波型圖分析.......................................64
4-2-1改變碳靶功率之電壓電流波型圖........................64
4-2-2改變碳靶脈衝週期之電壓電流波型圖.....................65
4-3不同碳靶功率對類鑽碳薄膜之影響........................66
4-3-1表面形貌分析.....................................66
4-3-2斷面形貌分析.....................................69
4-3-3表面粗糙度分析...................................72
4-3-4拉曼光譜儀分析...................................74
4-3-5 X-Ray 繞射分析..................................77
4-3-6歐傑成份分析.....................................78
4-3-7常溫磨耗試驗分析.................................81
4-3-8常溫磨耗軌跡分析.................................83
4-3-9高溫磨耗試驗.....................................86
4-3-10奈米硬度分析....................................88
4-3-11刮痕測試分析....................................90
4-3-12 OES電漿量測....................................92
4-3-13水接觸角試驗....................................93
4-4不同脈衝週期對類鑽碳膜之影響...............................95
4-4-1表面形貌分析.....................................95
4-4-2斷面形貌分析.....................................98
4-4-3表面粗糙度......................................101
4-4-4拉曼光譜儀分析...................................103
4-4-5 X-Ray 繞射分析.................................105
4-4-6歐傑成份分析....................................106
4-4-7常溫磨耗試驗分析.................................109
4-4-8磨耗軌跡分析....................................111
4-4-9奈米硬度分析....................................114
4-4-10刮痕試驗.......................................115
4-4-11 OES電漿分析...................................117
4-4-12水接觸角試驗...................................118

第五章 結論...............................................120

參考文獻..................................................122


Yue Qi, Erkan Konca and Ahmet T.Alpas, surface science.600 (2006) 2955.
D.Y. Wang, K.W. Weng and S.Y. Hwang, Diamond Relat. Mater. 9 (2000) 1762.
D.Y. Wang, K.W. Weng, C.L. Chang and X.J. Guo, Diamond Relat Mater. 9 (2000) 831.
M. Chhowalla, J.Robertson, C.W. Chen, S.R.P.Silva and G.A.J. Amaratunga, J. Appl. Phys. 81 (1997) 139.
K.W. Weng, Y.C. Chen, T.N. Lin and D.Y. Wang, Thin Solid Films. 515 (2006) 1053
W. J. Li, Z. R. Song, Y.H. Yu, X. Wang, and S.C. Zou, J. Appl. Phys. 94 (2003) 287.
W. J. Li, Z. R. Song, Y.H. Yu, S. C. Zou and Dashen Shen, Beam Interactions with Materials and Atoms.206(2003)339.
D.Y. Wang and K.W. Weng, surface and coatings technology. 137 (2001) 31.
K. E. Spear, J Am. Cerum. Soc, 72 (1989) 171-191.
J. Robertson, Surface and Coating Technology, 50 (1992) 185.
Hsiao-Cho Tsai and D. B. Body,J. Vac. Sci. Technol. A5/6 (1987) 3287-3313.
Effect of focused ion beam post-treatment on the diamond-like carbon films synthesized by RF plasma enhanced chemical vapor deposition”(2007).
W.D. Kingery, H. K.Bowen, and D.R. Uhlmann, Introduction to Ceramics, Chapter 2, John Wiley & Sons, Canada,1991.
J. Robertson, Surface and Coating Technology, 50 (1992) 185.
張瑞發, 化工資訊, 4 (1993) 68.
C. D. Martino, F. Demichelis, and A. Tagliaferro, Diamond Relat. Mater. 4 (1995) 1210.
J. J. Cuomo, D.L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, J. Appl. Phys. 70 (1991) 1706-1711.
P. C. Kelires, C. H. Lee and W. R. Lambrecht, J. Non-Cryst. Solids, 164/166 (1993) 1131-1134.
M. Sedlaček, B. Podgornik, J. Vižintin Materials Characterization Volume 59, Issue 2, February (2008) 151–161.
Vuppuladium, H. E.Jackson and R.L.C.Wu, J.Appl. Phys.77 (1995) 2714-2718.
M.A.Capano, N.T.McDeutt, R.k.singh and F.Qian, Journal of Vacuum Science and Technology A, 14(2) (1996) 431.
Tsai, D.B.Bogy, M.K.Kundmann, D.K. Veirs, M.R, , J.Vac.Sci.technol. 76 (1998) 2307-2315.
M.J.Peterson, Diamond and Related Materials, 5 (1996) 1407.
J.Shiao and R.W.Hoffman, Thin Solid Films, 283 (1996) 145.
C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, Acta metall, vol. 32, 5 (1984) 773-781.
P. B. Barna, and M. Adamik, Thin Solid Films, vol.317 (1998) 27-33.
J. A. Thornton, J.V.S.T. 11 (4) (1974) 666.
D. S. Richerby and A. Matthews, Advanced Surface Coatings : A Handbook of Surface Engineering, Chapman and Hall, New Yourk, (1991) 92-100.
B. A. Movchan, A.V. Demchishin, phys. Met. Metalloved, vol. 28 (1969) 653-660.
Rointan Framroze Bunshah, Handbook of deposition technologies for films and coatings: science, technology and applications, New Jersey, USA: Noyes publications 1994.
S.PalDey, S.C. Deevi, Materials Science and Engineerig, A342 (2003) 58
S. M. Rossnagel, Hankbook of Plasma Processing Technology, Park Ridge, New Jersey, USA: Noyes publications, (1989).
R. L. Boxman etal., Handbook of vacuum arc science and echnology Noues publications, (1995).
M. Holmbrg snd A. Film deposition by plasma techniques Springer-Verlag,(1995) .
J.Robertson, Materials Science and Engineering, R37 (2002) 129.
Andres Gary, Society of vacuum, 20 (2000) .
Yucong Wang, A Study of PVD coatings and die materials for extended die-casting die life, Surface and coating Technology, vol.94-95 (1997) 60-63.
Rointan Framroze Bunshah, Handbook of deposition technologies for films and coatings: science, technology and applications, New Jersey, USA: Noyes publications, (1994).
V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, L.
Jastrabik, Hardness, intrinsic stress, and structure of the a-C and
a-C:H films prepared by magnetron sputtering, Diamond and
Related Materials, 10 ( 2001) 1076-1081.
D.Y. Wang, C.L. Chang, Thin Solid Films, 392 (2000) 11-15.
S.B.Krupanidhi, N.Maffei , M.Sayer , K.EI -Assal , Journal of Applied Physics, Vol.54(11) (1983) 6601-6609.
K.Sreenivas , M.Sayer , D.J.Baar , M.Nishioka , , Applied Physics Letters, Vol.52(6-10) (1988) 709-711.
S Scott G. Walton and J. E. Greene, Plasmas in Deposition Processes, (2010).
D. P. Monaghan, D. G. Teer and I. Efeoglu, Surface and Coatings Technology, 59 (1993 ) 21-25.
D. P. Monaghan, D. G. Teer and I. Efeoglu, Surface and Coatings Technology, 59 (1993 ) 21-25.
P. J. Kelly*, R.D. Arnell, Vacuum , 569(3) (2000) 3-5.
K. Sarakinos, Surface and Coatings Technology , 204 (2010) 1661–1684, 7-8.
J. Paulitsch, Thin Solid Films 518 (2010) 5558-5564.
K. Sarakinos, Surface and Coatings Technology, 204 (2010) 15-17.
Mattias Samuelsson, Surface and Coatings Technology, 205 (2010).
D.Y. Wang, U.S.patent No.6, 331, 332.
J.Robertson and M.I.Manning, Materials Science and Technology, Vol1.6 (1990) 81-89.
F.Fitzer and J. Schliching, Oxidation of Metals, Vol.3.2 (1986) 465-471.
Yin-Yu Chang and Da-Yung Wang, SURFACE & Coatings Technology. 200 (2006) 3170.
C.D.Martino, F.Demichelis and A.Tagliaferro, Diamond Relat.Mater.4 (1995) 1210.
張瑞發, 化工資訊, 4 (1993) 68.
薄膜工程學, 全華科技圖書。
真空技術與應用, 呂登復, 13 (2002) 350, 國興出版社
工業材料雜誌213期93年9月173.
李新中(金屬工業研究發展中心)刀工具之真空蒸鍍表面處理技術及其應用
金屬工業研究發展中心, 金屬加工用刀具材料及處理技術手冊, 高雄市1998.
楊玉森, “物理蒸鍍技術在3C 產業之應用趨勢簡報”, 金屬工業研究發展中心
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top