跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁瑞璟
研究生(外文):Weng, Jui-Ching
論文名稱:含銀與銅摻雜氧化鋯鍍層對鈦材料抗菌性能的影響
論文名稱(外文):Anti-Bacterial Performance Of Silver And Copper Doped Zirconia Coatings On Titanium Materials
指導教授:謝耀南張銀祐
指導教授(外文):Shieh, Yaw-NanChang, Yin-Yu
口試委員:吳宛玉許瑞廷
口試委員(外文):Wu, Wan-YuHsu, Jui-Ting
口試日期:2012-07-19
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:磁控濺射抗菌氧化鋯鍍層
外文關鍵詞:SputteringAntibacterialZirconiaSilverCopperCoating
相關次數:
  • 被引用被引用:2
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
細菌的吸附和繁殖被認為是引發植體周圍發炎的關鍵,導致生醫級鈦植體軟硬組織壞死。植體的組成和表面處理方式關係到其性能。除了鈦金屬外氧化鋯(ZrO2)材料與鍍層具有生物相容性,可應用於骨科器械和牙科人工植體的生物醫學領域,能提高種植體與骨頭的結合。本研究於生物級純鈦植入材料上,利用磁控濺鍍系統調整磁控濺射之靶材功率和偏壓大小,沉積出不同銀(Ag)和銅(Cu)含量之ZrO2-Ag與Zr02-Cu薄膜,探討其抗菌性之應用。
本研究採用能量散佈光譜儀(EDS)與歐傑電子光譜儀(AES)量測鍍層之化學成分組成。而薄膜之形貌,晶相微結構與鍵結態則採用X光繞射儀(XRD),場發射掃描式電子顯微鏡(FESEM)與X光電子光譜儀(XPS)量測與分析。在體外抗菌分析用Syto9和Agar tests測試對伴放線桿菌(Aggregatibacter actinomycetemcomitans)、金黃色葡萄球菌 (Staphylococcus aureus)的抗菌性能。
ZrO2的表面形貌會隨著Ag含量增加,開始慢慢被銀離子覆蓋,導致無法看清ZrO2本身的表面形貌,且偏壓的調整會使ZrO2-Ag變得鬆散或緻密;在表面形貌下觀察Zr02-Cu,Zr02本身跟Cu的混合狀況十分良好,不管Cu含量的多寡已看不出Zr02本身的結構,但隨著偏壓的改變還是可以看出晶粒越來越緻密。Ag和Cu的含量會由功率提升而增加,同時會因為偏壓的升高或降低而有所增減,Ag含量約為Ag-20W-100V(3.16 at.%)、Ag-30W-100V(9.51 at.%)、Ag-40W-100V(17.81 at.%)、Ag-30W-0V(7.88 at.%)、Ag-30W-200V(2.63 at.%);Cu的含量則分別約為Cu-30W-100V(2.39 at.%)、Cu-40W-100V(5.40 at.%)、Cu-60W-200V(15.94 at.%)、Cu-60W-100V(17.75 at.%)、Cu-60W-0V(19.55 at.%)。Zr02本身為單斜晶相在摻雜微量Ag後,成為單斜和四方晶相共存,隨Ag的提升最後完全轉為四方晶相,調整偏壓不會讓晶相改變,只會讓峰值偏移。抗菌測試中,發現ZrO2鍍層比生醫級純鈦材料有較好的抗菌性,ZrO2-Ag薄膜在Ag含量到達約10 at.%後抗菌性能不會再繼續增長,ZrO2-Cu薄膜則是Cu含量越多抗菌性能越好。整體來說,隨著Ag和Cu的增加抗菌性能也會達到最佳化。

Bacterial adhesion and colonization are considered to play a key role in the pathogenesis of peri-implant disease, an inflammatory process leading to soft and hard tissue destruction around a Ti implant. The osseointegration of titanium implants is related to their composition and surface treatment. Zirconia coatings have been proved to increase their applications in the biomedical fields such as orthopedic devices and dental implants by improving implant osseointegration. In this study, doped ZrO2 coatings with different Ag and Cu contents were deposited on bio-grade pure Ti implant materials. A twin-gun magnetron sputtering system was used for the deposition of the ZrO2-Ag and ZrO2-Cu coating. The Ag and Cu contents in the deposited coatings were controlled by the magnetron power and bias voltage. EDS and AES was used to characterize the composition of the deposited ZrO2-Ag and ZrO2-Cu coatings. The crystalline structure and bonding states of the coatings were analyzed by XRD and XPS. The antibacterial behavior will vary, depending on the amount and size of the Ag and Cu particles on the coated Ti sample. In this study, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) and Staphylococcus aureus (S. aureus) found frequently in the implant-associated infections, were chosen for in vitro anti-bacterial analyses by a fluorescence staining method employing Syto9 and bacterial viability agar tests. The antibacterial activity was quantified as the fluorescence detected at 488 nm by an ELISA (enzyme-linked immunosorbent assay). It showed that the nanostructure and Ag and Cu contents of the ZrO2-Ag and ZrO2-Cu coatings were correlated with the antibacterial performance.
摘要 I
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1-1.1 動機 2
1-1.2 目的 2
第二章 文獻回顧 3
2-1 抗菌簡介 3
2-1.1 抗菌的概念 3
2-1.2 抗菌材料之原理 6
2-1.3 抗菌材料對細菌之影響 9
2-1.4 抗菌材料的應用 14
2-2 濺鍍技術 16
2-2.1 濺鍍原理 16
2-2.2 濺鍍種類 17
2-2.3 薄膜成長機制 18
2-2.4 薄膜結構 20
第三章 實驗方法 24
3-1 實驗流程 24
3-2 薄膜設計與製備 26
3-3 薄膜結構分析 29
3-3.1 熱場發射電子顯微鏡 29
3-3.2 X光繞射儀 30
3-3.3 X射線光電子能譜儀 31
3-3.4 歐傑電子能譜儀 32
3-3.5 奈米壓痕儀 33
3-3.6 Contact Angle 34
3-4 薄膜抗菌分析 35
3-4.1 核酸染色螢光分析(Syto 9 staining method) 35
3-4.2 營養固體培養基菌叢量測(Nutrient Agar test) 37
第四章 結果與討論 38
4-1 薄膜微結構與性質分析 38
4-1.1薄膜成分 38
4-1.2歐傑電子能譜分析 40
4-1.3場發射電子顯微鏡分析 43
4-1.4 X光繞射儀分析 48
4-1.5 XPS化學鍵結態分析 52
4-1.6 械性質硬度分析 57
4-1.7 水接觸角量測 59
4-2 抗菌分析 61
4-2.1 Syto9螢光抗菌性分析 61
4-2.2 Agar test培養菌叢量測 65
第五章 結論 68
未來展望 70
文獻回顧 71

【1】Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, Thompson VP, Lemons JE, “Basic Research Methods and Current Trends of Dental Implant Surfaces” J Biomed Mater Res B Appl Biomater. 2009 Feb;88(2):579-96.
【2】X.B. Tian, Z.M. Wang, S.Q. Yang, Z.J. Luo, Ricky K.Y. Fu, Paul K. Chu, “Antibacterial copper-containing titanium nitride films produced by dual magnetron sputtering” Surface and Coatings Technology Volume 201, Issues 19–20, 5 August 2007, Pages 8606–8609.
【3】J. Mungkalasiri, L. Bedel, F. Emieux, J. Doré,F.N.R. Renaud, F. Maury, “DLI-CVD of TiO2–Cu antibacterial thin films: Growth and characterization” Surface and Coatings Technology Volume 204, Issues 6–7, 25 December 2009, Pages 887–892.
【4】Necula BS, Apachitei I, Tichelaar FD, Fratila-Apachitei LE, Duszczyk J, “An electron microscopical study on the growth of TiO2–Ag antibacterial coatings on Ti6Al7Nb biomedical alloy” Acta Biomater. 2011 Jun;7(6):2751-7. Epub 2011 Mar 22.
【5】Jitti Mungkalasiri, Laurent Bedel, Fabrice Emieux, Jeanne Doré, François N. R. Renaud, Christos Sarantopoulos, Francis Maury, “CVD Elaboration of Nanostructured TiO2-Ag Thin Films with Efficient Antibacterial Properties” Chemical Vapor Deposition Volume 16, Issue 1-3, pages 35–41, March 2010.
【6】P.J. Kelly, H. Li, K.A. Whitehead, J. Verran, R.D. Arnell, I. Iordanova, “A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings” Surface and Coatings Technology Volume 204, Issues 6–7, 25 December 2009, Pages 1137–1140.
【7】Kertzman Z, Marchal J, Suarez M, Staia MH, Filip P, Kohli P, Aouadi SM, “Mechanical, tribological, and biocompatibility properties of ZrN-Ag nanocomposite films” J Biomed Mater Res A. 2008 Mar 15;84(4):1061-7.
【8】Yao Y, Ohko Y, Sekiguchi Y, Fujishima A, Kubota Y, “Self-Sterilization Using Silicone Catheters Coated With Ag and TiO2 Nanocomposite Thin Film” J Biomed Mater Res B Appl Biomater. 2008 May;85(2):453-60.
【9】Zhao J, Cai XM, Tang HQ, Liu T, Gu HQ, Cui RZ, “Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition” J Mater Sci Mater Med. 2009 Dec;20 Suppl 1:S101-5. Epub 2008 Jun 14.
【10】P.J. Kelly, H. Li, P.S. Benson, K.A. Whitehead, J. Verran, R.D. Arnell, I. Iordanova, “Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings” Surface and Coatings Technology Volume 205, Issue 5, 25 November 2010, Pages 1606–1610.
【11】H.C. Hsu, S.K. Yen, Dent. Mat. , 1998 , 339-346.
【12】Sundaram Ravikumar, Ramasamy Gokulakrishnan, “The Inhibitory Effect of Metal Oxide Nanoparticles against Poultry Pathogens” International Journal of Pharmaceutical Sciences and Drug Research, 2012, 4(2): 157-159.
【13】Sundaram Ravikumar, Ramasamy Gokulakrishnan, Pandi Boomi “In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens” Asian Pacific Journal of Tropical Disease ,2012, 85-89.
【14】Bussotti F, Ferretti M, “Air pollution, forest condition and forest decline in Southern Europe: an overview” Environ Pollut. 1998;101(1):49-65.
【15】Zhu YG, Wang ZC, Manning WJ, “An analysis of papers published in Environmental Pollution in 2006: A continuing pattern of advancement and success” Environ Pollut. 2007 Nov;150(1):2-4. Epub 2007 Sep 29.
【16】Bell ML, Cifuentes LA, Davis DL, Cushing E, Telles AG, Gouveia N, “Environmental health indicators and a case study of air pollution in Latin American cities” Environ Res. 2011 Jan;111(1):57-66. Epub 2010 Nov 13.
【22】O. Akhavan, E. Ghaderi , “Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities” Surface and Coatings Technology Volume 204, Issues 21–22, 15 August 2010, Pages 3676–3683.
【23】Zhao J, Cai XM, Tang HQ, Liu T, Gu HQ, Cui RZ, “Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition” J Mater Sci Mater Med. 2009 Dec;20 Suppl 1:S101-5. Epub 2008 Jun 14.
【24】A.B. Panda, P. Laha, K. Harish, B. Sarkar, S.V. Chaure, W.A. Sayyad, V.S. Jadhav, G.R. Kulkarni, D. Sasmal, P.K. Barhai, A.K. Das, S.K. Mahapatra, I. Banerjee , “Study of bactericidal efficiency of magnetron sputtered TiO2 films deposited atvarying oxygen partial pressure” Surface and Coatings Technology Volume 205, Issue 5, 25 November 2010, Pages 1611–1617.
【25】Z.G. Dan , H.W. Ni , B.F. Xu , J. Xiong , P.Y. Xiong, “Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions” Thin Solid Films 492 (2005) 93 – 100.
【26】Woo Kyung Jung, Hye Cheong Koo, Ki Woo Kim, Sook Shin, So Hyun Kim, Yong Ho Park, “Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli_” Appl. Environ. Microbiol. April 2008 vol. 74 no. 7 2171-2178.
【27】Norowski PA Jr, Bumgardner JD, “Biomaterial and Antibiotic Strategies for Peri-implantitis : a review” J Biomed Mater Res B Appl Biomater. 2009 Feb;88(2):530-43.
【28】Charalampakis G, Rabe P, Leonhardt A, Dahlén G, “A follow-up study of peri-implantitis cases after treatment” J Clin Periodontol. 2011 Sep;38(9):864-71.
【30】F. Shinoki, A. Itoh, “Mechanism of RF reactive sputtering” J. Appl. Phys. 46, (1975) 3381-3384.
【31】J. A. Thorton, Journal of Vacuum Science and Technology, 11, (1974), 666.
【32】Kenneth Holmberg Allan Matthews, Coatings Tribology, 2, 1994.
【33】Messier, R., Giri, A. P., Roy, R. A., Revised structure zone model for thin film physical structure, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2, (1984), 500-503.
【34】R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin physical structure” J. Vac. Sci.Technol.A2, 500-503(1984).
【35】Frank H. W. L0ffler, Surface and Coating Techonlogy, 68/69, (1994), 729-740
【37】Debajyoti Bhaduri, Arnab Ghosh, Soumya Gangopadhyay, Soumitra Paul, “Effect of target frequency, bias voltage and bias frequency on microstructure and mechanical properties of pulsed DC CFUBM sputtered TiN coating” Surface and Coatings Technology, 2010; 204:3684–3697.
【38】Birte Größner-Schreiber, Michael Griepentrog, Ingrun Haustein, Wolf-Dieter Müller, Helga Briedigkeit, Ulf Berthold Göbel, Klaus-Peter Lange, “Plaque formation on surface modified dental implants” Clinical Oral Implants Research Volume 12, Issue 6, pages 543–551, December 2001.
【39】Grössner-Schreiber B, Herzog M, Hedderich J, Dück A, Hannig M, Griepentrog M, “Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study” Clin Oral Implants Res. 2006 Dec;17(6):736-45.
【41】Phys. Rev. B 16, 750 (1977).
【42】J. Chem. Phys. 67, 3500 (1977)
【43】Surf. Sci. 33, 123 (1972).
【44】J. Vac. Sci. Technol. 18, 714 (1981).
【45】J. Musil, J. Vlcek, “Magnetron sputtering of hard nanocomposite coatings and their properties” Surface and Coatings Technology Volumes 142–144, July 2001, Pages 557–566.
【17】微生物館“細菌細胞的構造” 中國科普博覽.
【18】謝文陽,“細菌分類的濫觴和演變” 科學發展2006年12月,408期.
【19】汶萊商氟立傑能源服務有限公司台灣分公司“The biofilm 5 stages life cycle”.
【20】金宗哲, “ˊ無機抗菌材料及應用” 化學工業出版社,2004.
【21】汪山、陳繼健、陳奇,載銀型可溶性玻璃抗菌材料的研究與應用,玻璃與陶瓷, 2000, 28(5) :46~50
【29】李世鴻, “半導體工業原理” 全威圖書 , 1999.
【36】翁克偉, “陰極電弧放電被覆鈦鎳薄膜微觀組織之研究” 逢甲大學材料科學研究所碩士論文,1998.
【40】田大昌,黃啟貞,“場發射式歐傑電子顯微鏡(AES)/ 微區表面化學電子能譜儀(ESCA) 之簡介” 工業材料雜誌 201 期 92 年9 月

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top