跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳柏逸
研究生(外文):Wu, Boyi
論文名稱:高功率脈衝磁控濺射沉積氮化鉻薄膜之性質研究
論文名稱(外文):Standy on the Characteristic of CrN Coating by High Power Impulse Magnetron Sputter
指導教授:張奇龍張奇龍引用關係
指導教授(外文):Chang, Chilung
口試委員:吳宛玉劉憲政
口試委員(外文):Wu, WanyuLiu, Haiencheng
口試日期:2012-11-20
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:高功率脈衝磁控濺射氮化鉻占空比
外文關鍵詞:HiPIMSCrNDuty cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
本研究以高功率脈衝磁控濺射(High Power Impulse Magnetron Sputtering)系統並利用鉻靶與通入氬氣與氮氣的濺鍍方式於矽晶片、鎢鋼、304不銹鋼片等基材上沉積出氮化鉻薄膜(CrN)。研究中利用掃描式電子顯微鏡(SEM)、X光繞射儀(XRD)及原子力顯微鏡(AFM)量測CrN薄膜之表面型態、微結構、晶粒大小及表面粗糙度之變化;以化學分析電子光譜儀(ESCA)進行薄膜元素成分分析;以奈米壓痕來測定薄膜硬度與楊氏模數;以水接觸角來檢測薄膜是否為親水性或疏水性。
研究中主要為改變鉻靶占空比5~50%,並針對占空比對CrN薄膜之形貌、微結構、磨潤性、機械性質與腐蝕性質之影響進行探討。除此之外,也將由高功率脈衝磁控濺鍍(HiPIMS)技術得到之CrN薄膜與直流磁控濺射(DCMS)進行比較。
研究結果顯示,與傳統直流磁控濺射(DCMS)比較可得知,高功率脈衝磁控濺射所沉積的薄膜具有較佳的機械性質、磨耗性質、表面粗糙度及抗腐蝕性。而不同占空比中,當鉻靶占空比為10 %時,有最佳的薄膜性質,其摩擦係數為0.35 ~ 0.40、硬度為19 GPa、表面粗糙度為1.24 nm、極化阻抗為1.0×107 Ω/cm2。

In this work, chromium nitride thin films were deposited using high power impulse magnetron sputtering (HiPIMS) equipped with a chromium target. Reactive sputtering of chromium nitride films on silicon wafer, tungsten steel, and 304 stainless steel sheets in a mixed atmosphere of argon and nitrogen was studied. The surface morphology, microstructure, grain size and surface roughness of the CrN film was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The surface composition and the chemical bonding in CrN thin films were analyzed using Electron Spectroscopy for Chemical Analysis (ESCA). Hardness and the Young's modulus were measured by the nano-indentation while the contact angle was detected to see whether it is hydrophilic or hydrophobic.
The major studied parameter was the duty cycle of Cr target. The variation of duty cycle from 5 to 50% was studied to investigate its effect on morphology, microstructure, tribological properties, mechanical properties, and corrosion properties of CrN thin films. In addition, the CrN thin films obtained by high-power pulsed magnetron sputtering (HiPIMS) were also compared with that obtained by DC magnetron sputtering (DCMS).
The results show that, compare with DCMS, the CrN thin films obtained by high power impulse magnetron sputtering (HiPIMS) exhibit better mechanical properties, wear properties, anti-corrosion properties, and finer surface roughness. Within the duty cycles studied, the best film quality was obtained at the duty cycle of 10%. It was also found having the optimal properties of friction coefficient at 0.35~0.40, hardness at 19 GPa, a surface roughness of 1.24 nm, and the corrosion resistance of 1.0 × 107Ω/cm2.

中文摘要. ......................................................................................................i
英文摘要.......................................................................................................ii
致謝..........................................................................................................iii
目錄...........................................................................................................v
表目錄.......................................................................................................viii
圖目錄.........................................................................................................ix
第一章 緒論....................................................................................................1
1-1 前言........................................................................................................1
第二章 文獻回顧.................................................................................................2
2-1 薄膜沉積技術.................................................................................................2
2-2 直流濺射原理(DC sputtering)..................................................................................5
2-3 磁控濺射(Magnetron Sputtering)...............................................................................6
2-4 高功率脈衝磁控濺射............................................................................................7
2-4-1 HiPIMS與dcMS解離率比較...................................................................................7
2-4-2 薄膜沉積率...............................................................................................8
2-4-3 各種金屬沉積率...........................................................................................9
2-4-4 各種金屬薄膜密度.......................................................................................10
2-4-5 薄膜均勻性............................................................................................11
2-4-6 脈衝波型與模式.........................................................................................13
2-4-7 脈衝占空比.............................................................................................16
2-4-8 CrN文獻...............................................................................................17
2-5 鍍膜微結構.................................................................................................19
2-6 元素特性...................................................................................................23
第三章 實驗方法與步驟............................................................................................25
3-1 實驗流程...................................................................................................25
3-2 試片前處理.................................................................................................26
3-3 實驗設備與製程步驟...........................................................................................27
3-4 膜層設計與製程參數...........................................................................................30
3-4-1 膜層設計...............................................................................................30
3-4-2 薄膜製程參數............................................................................................31
3-5 分析儀器...................................................................................................32
3-5-1 磨耗試驗機...............................................................................................32
3-5-2 場發射掃描式電子顯微鏡鏡................................................................................33
3-5-3 X光繞射儀............................................................................................35
3-5-4 原子力顯微鏡..........................................................................................37
3-5-5 奈米硬度................................................................................................38
3-5-6 化學分析電子光譜儀.......................................................................................40
3-5-7 水接觸角量測儀...........................................................................................41
第四章 結果與討論..............................................................................................43
4.1 改變 Cr靶占空比之波形圖....................................................................................43
4-2 電漿分析..................................................................................................47
4-3 改變鉻靶占空比下氮化鉻薄膜性質分析.............................................................................50
4-3-1 表面與斷面形貌分析.......................................................................................50
4-3-2 X-Ray繞射分析..........................................................................................57
4-3-3 薄膜成分分析..........................................................................................59
4-3-5 奈米壓痕分析............................................................................................70
4-3-4 磨耗分析...............................................................................................71
4-4 改變鉻靶占空比下的氮化鉻薄膜電化學性質分析......................................................................73
4-5 改變鉻靶占空比下的氮化鉻薄膜親水、疏水性分析.....................................................................75
第五章 結論...................................................................................................78

參考文獻.......................................................................................................80

[1]Hsieh J H, Surface&Coatings Technology, 108-109 (1998) 132.
[2]Liepack H, Surface&Coatings Technology, 183 (2004) 69.
[3]Wu. S. K, Surface&Coatings Technology, 124 (2000) 97.
[4]J. Robertson, Material Science and Engineering, R37 (2002) 129.
[5]Eberhard Huber, Siegfriend Hofmann, Surface and Coatings Technology, 68 (1994) 64.
[6]X. T. Zeng, J. Vac. Sci. Technol. 17 (1999) 1991.
[7]Y. Wang, Surf. Coat. Technol, 94 (1997) 60.
[8]B. Navinsek, P. Panjan, I. Milosev, Surface and Coatings Technology, 97 (1997) 182.
[9]M.A. Djouadi, C. Nouveau, P. Beer, M. Lambertin, Surface and Coatings Technology, 133 (2000) 478.
[10]Rointan Framroze Bunshah, Handbook of deposition technologies for films and coatings: science, technology and applications, New Jersey, USA: Noyes publications, 1994.
[11]薄膜工程學 全華科技圖書(2004). 1-7~1-8
[12]莊達人編著,VLSI製造技術,台北縣五股鄉:高立圖書有限公司,2006,第151-161頁
[13]真空技術與應用,13 (2002) 433.
[14]P. J. Kelly, R.D.Arnell, Vacuum, 3 (2000) 3.
[15]A.P. Ehiasarian, W.D. Mu¨nz, L. Hultman, U. Helmersson, I. Petrov, Surface and Coatings Technologym, 163 (2003) 267.
[16]J. Paulitsch, Surface and Coatings Technology, 518 (2010) 5558.
[17]Mattias Samuelsson, Daniel Lundin, Jens Jensen, Michael A. Raadu, Jon Tomas Gudmundsson, Ulf Helmersson, Surface and Coatings Technology, 205 (2010) 591.
[18]K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, J. Alami, R. Cremer, Journal of Materials Processing Technology, 209 (2008) 165.
[19]Jianliang Lin, Ningyi Zhang, William D. Sproul, John J. Moore, Surface and Coatings Technology, 206 (2012) 3283.
[20]J.A. Thornton, J. V. S. T. 11 (1974) 666.
[21]Jianliang Lin, John J. Moore, William D. Sproul, Brajendra Mishra , Zhili Wu, Jun Wang, Surface and Coatings Technology, 204 (2010) 2230.
[22]I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Technol. 21 (2003) 117.
[23]Zhongzhen Wu, Xiubo Tian, Zeming Wang, Chunzhi Gong, Shiqin Yang, Cher Ming Tan, Paul K. Chu, Applied Surface Science, 258 (2011) 242.
[24]G. Greczynski, J. Jensen, J. Böhlmark, L. Hultman, Surface and Coatings Technology, 205 (2010) 118.
[25]J. Paulitsch, M. Schenkel, A. Schintlmeister, H. Hutter, P.H. Mayrhofer, Thin Solid Films, 518 (2010) 5553.
[26]B.A. Movchan, A.V. Demchishin, phys. Met. Metalloved, 28 (1969) 653.
[27]R. Messier, A.P. Giri and R.A. Roy, J. Vac. Sci. Technol, 2 (1984) 500.
[28]R. Messier, A. P. Giri and R. A. Roy, J. Vac. Sci. Technol, 2 (1984) 500.
[29]阿爾貝特‧斯特沃特加(Alberta Stwertka)著,台大化學系劉廣定教授增訂,田曉伍、任金霞譯,化學元素導覽,台北:世潮出版有限公司,2004。
[30]W. Herr, B. Matthes, E. Broszeit, M. Meyer, R. Suchentrunk, Surface and Coatings Technology, 60 (1993) 428.
[31]G. Wei, A. Rar, J.A. Barnard, Thin Solid Films, 398 (2001) 460.
[32]G. Wei, T.W. Scharf, J.N. Zhou, F. Huang, M.L. Weaver, J.A. Barnard, Surf. Coat. Technol, 146 (2001) 357.
[33]H. Era, Y. Ide, A. Ninoa, K. Kishitake, Surface and Coatings Technology, 194 (2005) 265.
[34]H.Era, Surface and Coatings Technology, 194 (2005) 265.
[35]張瑞慶,〝奈米壓痕技術與應用〞,力學學會會訊,Vol.114,2006。
[36]Qinghua Kong, Li Ji, Hongxuan Li, Xiaohong Liu, Yongjun Wang, Jianmin Chen, Huidi Zhou, Applied Surface Science, 257 (2011) 2269.
[37]Min Zhang, Meng-Ke Li, Kwang Ho Kim, Feng Pan, Applied Surface Science, 255 (2009) 9200.
[38]Kyung H. NamU, Min J. Jung, Jeon G. Han, Surface and Coatings Technology, 131 (2000) 222.
[39]J. Lin , Z.L. Wu , X.H. Zhang , B. Mishra , J.J. Moore , W.D. Sproul , Thin Solid Films, 517 (2009) 1887.
[40]R. Hoy, W.G. Sloof, G.C.A.M. Janssen, Surface and Coatings Technology, 179 (2004) 215.
[41]Yongqing Fu , Nee Lam Loh, Andrew W. Batchelor, Xiaodong Zhu, Kewei Xu, Jaiwen He, Materials Science and Engineering, 265 (1999) 224.
[42]A. Lippitz, Th. Hubert , Surface and Coatings Technology, 200 (2005) 250.
[43]Yongjing Shi, Siyuan Long, Liang Fang, Fusheng Pan, Huimin Liao, Applied Surface Science, 255 (2009) 6515.
[44]Harish C. Barshilia, B. Deepthi, K.S. Rajam, Surface and Coatings Technology, 201 (2007) 9468.
[45]Harish C. Barshilia, B. Deepthi, N. Selvakumar, Anjana Jain, K.S. Rajam, Applied Surface Science 253 (2007) 5076.
[46]C.W. Zou, H.J. Wang, M. Li, C.S. Liu, L.P. Guo, D.J. Fu, Vacuum 83 (2009) 1086.
[47]S.M. Aouadi, D.M. Schultze, S.L. Rohde, K.-C. Wong, K.A.R. Mitchell, Surface and Coatings Technology, 140 (2001) 269.
[48]J. Hu, Y.B. Li, H.L. Wang, W.C. Ren, Materials Letters 62 (2008) 1715.
[49]P.C. Wo, P.R. Munroe, Z. Li, Z.-T. Jiang, Z.H. Xie, Z.F. Zhou, K.Y. Li, Materials Science and Engineering, A 534 (2012) 297.
[50]A. Vyas, Y.G. Shen, Z.F. Zhou, K.Y. Li, Composites Science and Technology, 68 (2008) 2922.
[51]W.H. Zhang, J.H. Hsieh, Surface and Coatings Technology, 130 (2000) 240.
[52]腐蝕及其防制,全華科技圖書股份有限公司(2003)。
[53]C. Reinhard , A.P. Ehiasarian, P.Eh. Hovsepian, Thin Solid Films, 515 (2007) 3685.
[54]S. Guruvenket, G. Mohan Rao, Materials Science and Engineering , B 106 (2004) 172.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊