跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭建文
論文名稱:利用微波鹼處理與酵素水解生產木寡醣之研究
論文名稱(外文):A study on the production of xylooligosaccharides via microwave-assisted alkali treatment and enzymatic hydrolysis
指導教授:李靜宜李靜宜引用關係
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:稻草木質纖維素半纖維素微波鹼處理酵素水解木寡醣
外文關鍵詞:rice strawlignocelluloseshemicellulosesmicrowavealkali treatmentenzymatic hydrolysisxylooligosaccharides
相關次數:
  • 被引用被引用:1
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
木質纖維素(lignocellulose)是最豐沛的可再生生質物,可由農、林廢棄物及能源作物獲得。在經由適當轉化後,木質纖維素可生產生質能源與各式化學品。木質纖維素為複雜之天然高分子複合體其主要由纖維素、半纖維素、木質素所組成,其不同於澱粉質原料可直接經由酵素糖化後發酵,必須透過適當之前處理,適度地破壞其結構,並分離此三種成分,作最有效之運用。由於半纖維素是由五碳糖和六碳糖等成分所構成的多醣,在發酵過程中木糖、半纖維素水解後的主產物,不易被微生物發酵分解,因此在本研究中希望可以將此部分分離出來,進一步轉化生成木寡醣並進行研究探討。
本研究以稻草為原料,先將其經由兩段式的萃取,去除表面的蠟,再藉由微波化輔助鹼處理和酵素水解,探討利用不同溫度和氫氧化鈉濃度和反應時間對木寡醣的影響。結果顯示,前處理溫度與持溫時間的增加,雖然可以提高木寡醣的產率,但溫度變化的影響較小,持溫時間長度的影響較大。隨著NaOH的濃度的增加,木寡醣的產量先增後減。在所探討的三種變因操作範圍中,以在180℃持溫5 min 0.5% NaOH進行鹼處理的樣品所獲得的木寡醣產率為最佳。

關鍵字:稻草、木質纖維素、半纖維素、微波、鹼處理、酵素水解、木寡醣

Lignocellulose is the most abundant renewable biomass, including agricultural and forestry residues and herbaceous and woody crops. Lignocellulosic materials provide a unique resource for sustainable production of bioethanol and chemicals. Lignocellulose is a complicated natural polymer complex, mainly composed of cellulose, hemicelluloses and lignin. Different from starchy materials which can be converted directly through enzymatic saccharification, and fermentation, lignocellulosic materials must go through appropriate pretreatment to disintegrate structure and separate three components moderately to obtain the most effective use.
  Hemicellulose is a polysaccharide mainly composed of five-carbon and six-carbon sugars. Xylose, the major hydrolytic product of hemicelluloses, is not fermentable to most microorganisms. Therefore, the objective of this study is to separate hemicellulose from lignocellulosic materials and further convert it to xylooligosaccharides.
  In the study, rice straw was adopted as the raw material. It first went through a two-stage extraction with water and ethanol to remove wax and lignin partly. Secondly, it was subject to microwave-assisted alkali pretreatment to solubilize hemicelluloses. Finally, the soluble hemicellulose was hydrolyzed by enzyme to obtain xylooligosaccharides. Three pretreatment variables, including temperature, sodium hydroxide concentration and reaction time, were investigated to understand their effect to the production of xylooligosaccharides. The results showed that the yield of xylooligosaccharides increased with temperature and reaction time. But the influence of temperature to yield is relatively lower than the influence of reaction time to yield. As the concentration of sodium hydroxide increased, the yield of xylooligosaccharides increased first and then dropped. Among the pretreatment conditions studied, a combination of reaction temperature of 180℃, reaction time of 5 min and sodium hydroxide concentration of 0.5% resulted in a highest xylooligosaccharide yield.

Keywords: rice straw, lignocelluloses, hemicelluloses, microwave, alkali treatment, enzymatic hydrolysis, xylooligosaccharides
目錄

摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2實驗動機 1
1.3 研究目的 2
第二章 文獻回顧 3
2.1生質物與生質能 3
2.1.1生質能 3
2.1.2 木質纖維素 5
2.1.4 木質素 10
2.1.5 半纖維素 13
2.1.6 木聚醣 14
2.1.6.1 硬木木聚醣 15
2.1.6.2 軟木木聚醣 15
2.2 木質纖維素的前處理 19
2.2.1 機械研磨(Mechanical commimution) 19
2.2.2 熱裂解(Pyrolysis) 20
2.2.3 水熱法 20
2.2.4 稀酸前處理(Diluted acid pretreatment) 21
2.2.5 鹼處理 22
2.2.6 蒸氣爆裂法 23
2.2.7 超音波法 24
2.2.8 微波加熱法(Microwave pretreatment) 25
2.3 木聚醣之水解 26
2.4 半纖維素之應用 28
2.4.1半纖維素多醣 28
2.4.2木糖 28
2.4.3 木糖醇 29
2.4.4 木寡醣 30
2.4.5 木寡醣的制備方法 33
3.1儀器設備與材料 35
3.1.1藥品 35
3.1.2儀器設備 36
3.2實驗方法與步驟 37
3.2.1 稻草可萃取物的去除 37
3.2.2鹼處理 38
3.2.3酵素水解 39
3.2.4稻草成分組成分析 40
3.2.4.1樣品內酸可溶木質素的分析 42
3.2.4.2樣品內酸不可溶木質素及灰份的分析 43
第四章 結果與討論 44
4.1稻草萃取前後之變化 44
4.1.2 掃描式電子顯微鏡分析 46
4.2稻草經鹼處理後消耗率之變化 49
4.3木寡醣濃度與酵素水解時間的關係 53
4.4 鹼處理的NAOH濃度對木寡醣濃度的影響 55
4.6 前處理持溫時間對木寡醣濃度的影響 64
4.7 木寡醣的產量 66
第五章 結論 71
文獻參考 72

Akpinar O., Erdogan K., Bostanci S., Enzymatic production of xylooligosaccharide from selected agricultural wastes, Food Bioprod. Proc., 87(2):145-151 (2009).
Akpinar O., Erdogan K., Bostanci S., Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials, Carbo. Res., 344(5):600-666 (2009).
Akpinar O., Ozlem A. K., Kavas A., Bakir U., Yilmaz L., Enzymatic Production of Xylooligosaccharides from Cotton Stalks, J. Agric, Food Chem, 55(14):5544-5551 (2007).
Alen R., Glullichsen J., Paulapuro H.(eds.), Structure and chemical composition of wood, Forest Products Chemistry, Jyvaskyla, Finland: Fapet Oy, (2000).
Alonso J. L., Domiguez H., Garrote G., Parajo J. C., Vazquez M.J., Xylooligo- saccharides: properties and production technologies, Electron. J. Environ Agric, Food Chem, (2003).
Amartey S.A., Leung P.C.J., Baghaei-Yazdi N., Leak D.J., Hartley B.S., Fermentation of a wheat straw acid hydrolysate by Bacillus stearothermophilus T-13 in continuous culture with partial cell recycle, Proc. Biochem, 34(3):289-294(1999).
Anastasi A., Vizzini A., Prigione V., Varse G.C., Wood degrading fungi: morphology, metabolism and environmental applications, In: Chauhan AK and Varma A (eds.) A Textbook of Molecular Biotechnology. I. K. International, New Delhi, 957-993(2009).
Arora D.S., Chander M., Gill P.K., Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw, Int. Bioterior and Biodegrad, 50(2):115-120(2002).
Bailey M.J.S., Biely P., Poutanen K., Interlaboratory testing of methods for assay of xylanase activity, J.Biotechnol., 23(3):257-270(1992).
Beg Q.K., Kapoor M., Mahajan L., Hoondal G.S., Microbial xylanases and their industrial applications: a review, Appl. Microbiol. Biotechnol., 56:326-328(2001).
Benar P., Gonqalves A.R., Mandelli D., Schuchardt U., Eucalyptus organosolv lignins: study of the hydroxymethylation and use in resols, Bioresour. Technol., 68(1): 11-16(1999).
Budarin V.L., Clark J.H., Lanigan B.A., Shuttleworth P., Breeden S.W., Wilson A.J., Macquarrie D.J., Milkowski K., Jones J., Bridgeman T., Ross A., The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw, Bioresour. Technol., 100 (23):6064-6068(2009).
Chan G.W., Wooten J.B., Baliga V.L., Characterization of chars from pyrolysis of lignin, Fuel, 83(11-12):1469-1482(2004).
Christov L.P., Prior B.A., Esterases of xylan-degrading microorganism: properties, and significance, Enzyme Microb Technol, 15(6):460-475(1993).
Cosgrove D.J., Cell Walls: Structures, Biogenesis, and Expansion. Plant Physiology, Taiz L., Zeiger E.(eds), Sunderland: Sinauer Associates, Inc. (1998).
Coughlan M.P., Hazlwood G.P., β-1,4-D-xylan-degrading enzyme systems:biochemistry, molecular biology and application, Biotech Appl. Biochem., 17:259-289(1993).
Dekker R.F.H., Richards G.N., Hemicellulases: their occurrence, purification, properties and mode of action, Adv. Carbo.Chem. Biochem., 32:277-352(1976).
Ebringerova A., Hromadkova Z., Effect of ultrasound on the extractibility of corn bran hemicelluloses, Ultrasonics Sonochem., 9(4):225-229(2002).
Ebringerová A., Structural Diversity and Application Potential of Hemicelluloses, Macromolecular Symposia, 232(1):1-12(2005).
Esteghlalian A., Hashimoto A.G., Fenske J.J., Penner M.H., Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass, Bioresour. Technol., 59(2-3):129-136(1997).
Fan L.T., Gharpuray M.M., Lee Y.H., Cellulose hydrolysis Biotechnology Monographs, Springer, Berlin, (3):(1987)
Fengel D., and Wegener G. (eds.), Wood:Chemistry, Ultrastructure, Reactions, New York, Walter de Gruyter, (1989).
Gabrielii I., Gatenholm P., Glasser W.G., Jain R.K., Kenne L., Separation, chara- cterization and hydrogel-formation of hemicellulose from aspen wood, Carbohydrate Polymers, 43(4):367-374(2000).
Gröndahl M., Eriksson L., Gatenholm P., Material properties of plasticized hardwood xylans for potential application as oxygen barrier films, Biomacromolecules, 5(4): 1528-1535(2004).
Hanim S.S., Noor M.A.M., Rosma A., Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production, Bioresource Technology, 102(2):1234-1239(2011).
Hartman J., Albertsson A.C., Lindblad M.S., Sjöberg J., Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films, J. Applied Polymer Sci., 100 (4):2985-2991(2006).
Jaffe G.M., Xylitol-a Specialty Sweentener, Sugar Azucar, L-xylulose to D-Xylulose, J. Am. Chem., 78(23):3544(1978).
Joseleau J.P., Comtat J., Ruel K., Chemical structure of xylans and their interaction in the plant cell walls, Elsevier Amsterdam, 1-15(1992).
Joseleau J., Comtat J., Ruel K., Reducing end groups in birch xylan and their alkaline degradation, Wood Sci Technol, 11:251-263(1992).
Juliano B.O., Rice: Chemistry and Technology, American Association of Cereal Chemists, 2:647-707(1985).
Kadam K.L., Forrest L.H., Jacobson W.A., Rice straws lignocellulosic resource: collection, processing, transportation, and environmental aspects, Biomass Bioeng., 18(5):369-389 (2000).
Lee J., Biological conversion of lignocellulosic biomass to ethanol, J. Biotechnol., 56(1):1-24(1997).
Li K., Azadi P., Collins R., Tolan J., Kim J.S., Eriksson K.E.L., Relationship between activites of xylanases and xylan structures, Enzyme Microbial Technol., 27(1-2):89-94 (2000).
Mandels M., Reese E.T., Induction of cellulose in Trichoderma viride as influenced by carbon source and metals, J Bacteriol, 73(2):269-278(1957).
Martínez Á.T., Rencoret J., Marques G., Gutiérrez A., Ibarra D., Jiménez-Barbero J., del Río J.C., Monolignol acylation and lignin structure in some nonwoody plants: A 2D NMR study, Phytochemistry, 69(16 ):2831-2843(2008).
Miller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31(3):426-428(1959).
Moniruzzaman M., Saccharification and alcohol fermentation of steamexploded rice straw, Bioresour. Technol., 55(2):111-117(1996).
Morales P., Madarro A., Flor A., Sendra J.M., Prez-Gonzlez J.A., Purification and characterization of a xylanase and an arabinofuranosides from Bacillus polymyxa, Enzyme Microbial Tecchnol., 17:424-429(1995).
Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol., 96(6):673-686(2005).
Moure A., Gullon P., Dominguez, H. Parajo J., Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals, Proc. Biochem., 41 (9):1913-1923(2006).
Nabarlatz D., Ebringerová A., Montané D., Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides, Carbo. Polym., 69(1):20-28 (2007).
Oliveira E.E., Silva A.E., Júnior T.N., Gomes M.C.S., Aguiar L.M., Marcelino H.R., Araújo I.B., Bayer M.P., Ricardo N.M.P.S., Oliveira A.G., Xylan from corn cobs, a promising polymer for drug delivery: production and characterization, Bioresour. Technol., 101 (14):5402-5406(2010).
Pereira R.L., The chemistry involved in the steam treatment of lignocellulosic materials, Quimica Nova, 26(6):863-871(2003).
Shleser R., Ethanol production in Hawaii, State of Hawaii, Energy Division, Department of Business Economic Development and Tourism, Honolulu HI USA, (1994).
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D., Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure, National Renewable Energy Laboratory, (2008).
Sun Y., Cheng J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 83(1):1-11(2002).
Vazquez M.J., Alonso J.L., Dominguez H., and Parajo J.C., Xylooligosaccharides: manufacture and applications, Trends .Food Sci. Technol., 11(11):387-393 (2000).
Vegas R., Alonso J.L., Dominguez H., Parajo J.C., Enzymatic processing of rice husk atohydrolysis products for obtaining low molecular weight oligosaccharides, Food Biotechnol., 22:31-46(2008).
Velasquez J.A., Ferrando F., Salvado J., Effects of Kraft lignin addition in the production of binderless fiber board from steam exploded Miscanthus sinenals, Ind. Corps Prod., 18(1):17-23(2003).
Wang F., Hu G., Xiao J. and Liu Y., Improvement in the productivity of xylooligosaccharides from rice straw by feed xylanase with ultrafiltration, Arch. Biol. Sci., Belgrade, 63 (1):161-166(2011).
Wang J., Sun B., Cao Y., Tian Y., Wang C.T., Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH, Carbo. Polym., 77(4):816-821(2009).
Wong K.K.Y., Tan L.U.L., Saddler J.N., Multiplicity of β-1,4-xylanase in microorganisms: function and applications, Microbiol., 52(3):305-317(1988).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊