跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張永霖
論文名稱:改善高密度電漿金屬蝕刻製程時間之研究
論文名稱(外文):Study of Improvement of High-Density Plasma Metal Etching Processing Time
指導教授:陳密陳密引用關係
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:電漿蝕刻均匀度光阻殘留量金屬蝕刻時間
外文關鍵詞:plasma etchinguniformityresidual amount of photoresistmetaletch time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:658
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電漿蝕刻已廣泛應用於半導體之積體電路圖案製作,因半導體製造的程序繁雜且耗時,所以縮短製程的時間,為目前半導體產業界之重要的目標。
本論文探討以電感偶合式(ICP)電漿反應器進行金屬蝕刻,目前一般金屬蝕刻程式,蝕刻總時間約240秒,本論文以增加電漿功率及蝕刻氣體流量,提升離子轟擊及化學蝕刻能力,以達到縮短金屬蝕刻製程之時間,提升製程生產效率,降低製造成本,進而提升產能與企業競爭力。
研究結果顯示,偏壓功率加大,蝕刻後臨界尺寸(AEI CD)亦變大,AEI CD與偏壓功率呈線性的關係。在腔體壓力20 mtorr的條件下,晶圓中心對晶圓邊緣 CD的差異性最小,均匀度最好。增加C2H4/He氣體,提供蝕刻時側壁之保護。提高OE1及OE2的蝕刻秒數,可增加P-TEOS 損失量。改變緩衝步驟的功率以及BCl3與Cl2的比例,可以改善側壁蝕刻的現象。本論文所建立新的蝕刻流程,總蝕刻時間大約是157秒,金屬蝕刻縮短83秒,整體改善34%。對光阻的殘留量以及腐蝕性試驗的確認,結果均正常。針對金屬導線阻值及良率與現行程式比對後均無差異。本研究成果可以應用在金屬蝕刻相關製程上。
Plasma etching was widely used for the patterning process in integrated circuit fabrication. However, Semiconductor manufacturing processes are complex and time-consuming. To shorten the processing time is the important objective of the semiconductor companies.
In this thesis, metal etching was performed by Inductive Coupled Plasma ( ICP) reactor. In conventional metal etching recipe, the overall metal etch time is about 240 seconds. In this work, increasing power and the etching gas flow rate can improve the ion bombardment energy and Chemical etching ability that can shorten metal etching time, enhance production efficiency, decrease fabrication cost, and improve the competition of enterprise.
The results show that AEI CD became broader with increasing Bias power. It is straight linear relation between AEI CD and Bias power. The optimal chamber pressure is 20mtorr that uniform profile wafer edge CD with minimum deviation between wafer centor is obtained. C2H2 and He gas mixture in etching recipe provide side wall passivation. Increasing OE1 (over etching one) and OE2 would increase P-TEOS loss. Changing source power, bias power and the ratio of BCl3/Cl2 in buffer step improve the side wall undercut. In this study, overall etching time is 157 seconds. The improvement is 34% higher than original recipe time. And the AEI CD, bias CD and profile CD are the same as original profile. Moreover the inspection of residual amount of photoresist and corrosion testing are normal. The resistance measurement of metal interconnection and yield is no deviation with that sample fabricate by original process. So, this study results can be applied to the relative metal etching manufacturing procedure.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 蝕刻種類 2
1.3 研究動機 3
第二章 文獻回顧 4
2.1電漿簡介 4
2.2電漿蝕刻原理 8
2.2.1 電漿蝕刻反應步驟 8
2.2.2 電漿蝕刻方式 9
2.2.2.1物理蝕刻 9
2.2.2.2化學蝕刻 10
2.2.3 蝕刻速率(Etch rate)及其影響之參數 13
2.3.4 蝕刻術語說明 14
2.3電漿反應器簡 16
2.3.1 電感耦合是電漿源蝕刻系統 16
2.4電漿診斷簡介及應用 20
2.4.1電漿放射光譜儀 20
2.5金屬蝕刻製程 21
第三章 研究方法與步驟 23
3.1實驗流程 23
3.1.1電感耦合式電將反應金屬蝕刻製程 23
3.1.2金屬蝕刻圖形規格 26
3.1.3現行蝕刻程式表與蝕刻程式各步驟的解釋 26
3.2實驗設備 28
3.2.1電漿蝕刻機台 28
3.3分析儀器 32
3.3.1電漿放射光譜儀 32
3.3.2掃描式電子顯微鏡 33
第四章 實驗結果與討論 38
4.1新蝕刻製程與現有的蝕刻製程比較 38
4.1.1改變蝕刻氣體流量對蝕刻側壁剖面的效應 43
4.1.2改變緩衝步驟對頂端側壁鋁蝕刻效應 47
4.1.3偏壓功率對金屬蝕刻線寬之效應 49
4.1.4腔體壓力對金屬蝕刻線寬之效應 54
4.1.5新蝕刻製程之整體效應 57
4.1.6光阻的殘留量確認 60
4.1.7腐蝕性試驗確認 61
4.1.8品質測試結果 62
4.2 實驗結果與討論 65
第五章 結論 66
參考文獻 67

【1】 Brian Cpapman, “Glow Discharge Process”, John Wiley &; Sons, Canada, 1980.
【2】 龍柏華,何孝恆“乾蝕刻製程暨機台原理簡介”,光連雙月刊,第53期,2004。
【3】 M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing ”, Chap 15, John Wiley &; Sons, INC, 1994.
【4】 Hong Xiao原著,羅正忠、張鼎張譯, “半導體製程技術導論 修訂版”,歐亞出版社,2010。
【5】 W. R. Harshbarger, R. A. porter, T. A. miller, and Pnorton, “A Study of the Optical Emission from an rf Plasma during Semiconductor Etching”, Applied Spectroscopy. 31, 3, 1977.
【6】 張勁燕,” 半導體製程設備”, 五南圖書出版股份有限公司,2009。
【7】 R. A. Gottscho, V. M. Donnelly. “Optical emission actinometry and spectral line shapes in rf glow discharges”, J. Apply. Phys.56, 245, 1984.
【8】 M. A. Liberman, A. J. Lichtenberg, “Principles of Plasma Discharge and Materials Processing”, New York, 1994.
【9】 N. C. M. Fuller, Irving P. Herman, “Optical actinometry of Cl2, Cl, Cl+, and Ar+ densities in inductively coupled Cl2–Ar plasmas”, J. Apply. Phys. 90, 3182, 2001.
【10】 Hsieh, L.T, Lee, W. J, Chen, C. Y. Wu, P. G, Chen S. J, Wang. Y.F, “Decomposition of Methyl Chloride by Using an RF Plasma Reactor”, Journal of HazardousMaterials. 63, 69, 1998.
【11】 Y. F. Wang, C. Y. Lee, L. T. Hsieh, “Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a cold Plasma Syatem”, Environmental Science &; Technology. 33, 2234, 1999.
【12】 W.Z. Collison, T.Q. Ni, In M. S. Barnes, “Studies of the low-pressure inductived-coupled plasma etching for a large area wafer using plasma modeling and Langmuir probe”, J. Vac. Sci. Tecchnol. A 16, 100, 1998.
【13】 M.V. Malyshev, V.M. Donnelly, A. Kombit, and N. A. Ciampa, “Percent dissociation of Cl2 in inductively coupled, chlorine-containing plasmas”, J. Apply. Phys.84, 137, 1998.
【14】 Paul Werbaneth, John Alrnetico, “STI etch in Cl2-Ar plasmas”, solid state technology, 87, 2000.
【15】 M. H. Khater, L. J. Overzet, “Chlorine plasma and polysilicon etch characterization in an inductived-coupled plasma etch reactor”, Plasma Source Science &; Technology. 13,466, 2004.
【16】 J.P. Chang, and J.W., Coburn, ”Plasma-surface interactions”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2003.
【17】 J.P. Chang, and H.H., Sawin, “Notch formation bystress enhancedspontaneous etching of polysilicon”, Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures, 2001.
【18】 ddy Jr, C.R, Leonhardt, D, Shamamian, V.A., Butler, J.E, and Thoms, B.D, “Mass spectrometry sampling method for characterizing high-density plasma etching mechanisms”, Applied Physics Letters, 2003.
【19】 莊達人,“VLSI 製造技術”,高立出版社,2006。
【20】 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,“電漿源原理與應用之介紹” ,物理雙月刊 (廿八卷 P440-451) ,2006。
【21】 熊明德、郭明村、方宏聲 “終點偵測技術於乾式去光阻製程設備之應用” ,光電與半導體設備技術專輯,2005。
【22】 John Liobe, “The Antenna Effect”, Problem and Solutions, 2004.
【23】 http://brighter.myweb.hinet.net/chap3/chap3-3.htm (SEM)
【24】 Jer-shen, Maa, “Surface passivation by adding fluorocarbons and chlorofluorocarbons into an Al dry etch reactor”, Journal of Vacuum Science &; Technology B: Microelectronics and Nanometer Structures ublication Year, 1987.
【25】 J. H. HA, M. H. Yim and J. J. KIM, “A1 Etch and after-corrosion characteristics INA M=O helicon wave plasma etcher“, Microprocesses and Nanotechnology Conference, 1998.
【26】 Ikeda, Kei, Oshita, Yoshio, “Numerical analysis of the pressure dependence of the etch rate in an Al etching reactor equipped with a helicon source“, AVS JOURNALS &; MAGAZINES, 1998.
【27】 K Kolari,; R.L, Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition”, Journal of Vacuum Science &; Technology B: Microelectronics and Nanometer Structures, 2006.
【28】 Neil, Heiman, “High rate reactive ion etching of Al2O3 and Si”, Journal of Vacuum Science and Technology, 1980.
【29】 C‐K, Hu, “A process for improved Al(Cu) reactive ion etching”, Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, 1989.
【30】 G, Stojakovic, “Reactive ion etch of 150 nm Al lines for interconnections in dynamic random access memory”, Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, 2000.
【31】 F, Engelmark, “Selective etching of Al/AlN structures for metallization of surface acoustic wave devices“, Journal of Vacuum Science &; Technology B: Microelectronics and Nanometer Structures, 2002.
【32】 蔡春鴻、林滄浪、柳克強、胡媛、潘欽、林強、張廖貴術 ”高密度電漿蝕刻系統研究發展”,電子月刊(2000年8月號)。
【33】 Orlando Auciello, Dniel L. Flamm, “Plasma Diagnostics:Surface Analysis and Interactions (Plasma-Materials and Interactions) ”, Academic Press, 1989.
【34】 J. W. Coburn and M. Chen, J. Apply. Phys. 51, 3134, 1980.
【35】 V. M. Donnelly, J. Vac. Sci. Technol. A 14(3), 1076, 1996.
【36】 L. M. Smith and D. R. Keefer, J. Quant. Spectrosc. Radiat. TransferVol. 39, No. 5, 367 ,1988.
【37】 A. Okigawa, T. Makabe, T. Shibagaki, N. Nakano, Z. L. Petrovic, TKogawa, and A. Itoh, Jpn. J. Appl. Phys., vol. 35, pp.1890-1893, 1996.
【38】 Eric C. Benck and Kasra Etemadi ,National Institute of Standards andTechnology, Gaithersburg, MD 20899.
【39】 S. M. Candel, Computer Physics Communications, 23, 343 ,1981.
【40】 M. V. Malyshev, V. M. Donnelly, A. Kornblit, and N. A. Ciampa, J.Appl. Phys., Vol. 84, No. 1, 137 ,1998.
【41】 Roawen Chen, “OES-based Sensing for Plasma Processing in ICManufacturing”, Dept. of EECS, UC Berkeley, CA Ph.D, 1997.
【42】 R. A. Gottscho and V. M. Donnelly, J. Apply Phys. 56, 245, 1984.
【43】 S. Miyake, N. Shimura, T. Makabe and A. ltoh: J. Vac. Sic. Technol.A 10, 1135, 1992.
【44】 K. Hioki, H Hirata, S. Matsumura, Z. Lj. Petrovic and T. Makabe, J. Vac. Sci. Technol. A 18(3), 2000.
【45】 A. Okigawa, M. Tadokoro, A. Itoh, N. Nakano, Z. Lj. Petrovic, andT. Kogawa, Jpn. J. Appl. Phys, Part 1 36, 4605 , 1997.
【46】 M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).
【47】 R. Patrick, S. Baldwin, N. Williams, “Application of direct bias control in high-density inductively coupled plasma etching equipment”, J. Vac. Sci. Technol. A 18(2), 2000.
【48】 Y. T. Lee, M. A. Lieberman, A. J. Lichtenberg, F. Bose, H. Baltes and R. Patrick, “Global model for high pressure electronegative radio-frequency discharges”, J. Vac. Sci. Technol. A 15(1), 1997.
【49】 Shahid Rauf, and Mark J. Kushner, “Virtual Plasma Equipment Model:A Tool for Investigating Feedback Control in Plasma Processing Equipment”, IEEE transitions on semiconductor manufacturing, vol.11,no 3, 1998.
【50】 C. Lee, M. A. Lieberman, “Global model of Ar , O2 , Cl2 and Ar/O2 high-density plasma discharges”, J. Vac. Sci. Technol. A 13(2), 1995.
【51】 R. A. Stewart, P. Vitello,D. B. Graves, ”Two-dimensional fluid model of high density inductively coupled plasma sources”, J. Vac. Sci.Technol. B 12(1), 1994.
【52】 S. Thomas, H.M. Berg, “Micro-Corrosion of Al-Cu Bonding Pads”, Motorola, Inc., P.153.
【53】 Thomas Dittkrist, ”Application of plasma parameters to characterize product interactions between memory and logic products at Gate Contact(GC) Stack etch in LAM TCP”, 2rd European AEC/APC Conference -Dresden, P204, April 18th-20th 2001.
【54】 S. Bothra, H. Sur, V.Liang, R. Annapragada and J. Patel “Corrosion of Tungsten due to plasma charging in a metal plasma etcher”, VLSI Technology, Inc. 1109, Mckay Dr, San Jose, CA 95035.
【55】 E.C. Douglas, Solid state technology, vol. 24, 1981, p.65.
【56】 J. S. Judge, Etching for pattern definition, Electromechanical society, 1976, p.19.
【57】 S. Wolf, Silicon processing for the VLSI era, vol. 1, ch15, Lattice Press, 1986.
【58】 J. L. Vossen and W. Kern, thin film process, part III, Academic Press, 1978.
【59】 Hajime Hirata, Masahiro Tadokoro, Nobuhiko Nakano, Zoran Lj.Petrovic, and Toshiaki Makabe, IEEE Transactions on Plasma Science, Vol. 27, 1999.
【60】 J.P. Chang, and, J.W. Coburn, ”Plasma-surface interactions”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 21, n 5 SUPPL., 2003, p S145-S151.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文