跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李懿真
研究生(外文):Yi-Jhen Li
論文名稱:單軸CESL應力下(110)面奈米等級MOSFET之通道電阻特性研究
論文名稱(外文):單軸CESL應力下(110)面奈米等級MOSFET之通道電阻特性研究
指導教授:王木俊王木俊引用關係
指導教授(外文):Mu-Chun Wang
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:雙軸應變驅動電流拉伸應變壓縮應變接觸式蝕刻停止層
外文關鍵詞:Biaxial straindriver currenttensile straincompressive strainCESL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導生產技術日漸的進步,金氧半場效電晶體(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)已從90奈米的世代進入到45奈米甚至到現在的28奈米,遵循摩爾定律(Moore’s law)的原則下,藉著元件尺寸不斷地微縮,金氧半場效電晶體的驅動電流效能是可以被提升,但到奈米等級時,即有很大的製程技術瓶頸。為了解決此等問題,研究發現,應變矽工程(Strain Si Engineering)可以適度地改善元件的驅動電流,且其製程模組可以被整合於CMOS製程量產中。
應變工程通常可分為雙軸應變與單軸應變二種。全面應變或雙軸應變乃是一個二維的效應,利用接觸式蝕刻停止層(Contact Etch Stop Layer, CESL)的製程改變產生壓縮或伸拉應變。雖元件製於同一基板上,但不同的通道位置,其應變產生的應力大小也些許不同,故其元件製作的均勻性即是最大的挑戰之一。另外,不同的通道位置具有單一方向不同的應力大小,則稱為局部應變或單軸應變。雙軸應變製程可以同時改善nMOSFET與pMOSFET效能,但是單軸製程一般只能改善其中之一,但同時也可能會劣化另一型元件。
本次研究的主題主要是討論<110>MOSFET電晶體於雙軸應變工程技術下,藉壓縮與伸拉應變的特性,對元件產生一定的電性影響。藉由實驗數據分析,可瞭解元件尺寸的縮小,在不同通道長度下,其元件通道所受的壓縮與伸拉應變,如何影響元件驅動電流效能,而此效能如何與通道電阻有相關連?

With scaling-down technology for device feature, the driving current of metal oxide semiconductor field effect transistor, MOSFET, was able to be promoted. However, the bottleneck of process development was shown when the scaling level entered nano-regime. To solve these issues, the researchers observed that the strain Si engineering is a suitable process to effectively improve the driving current. The other is that the process module is able to be integrated into the CMOS process production.
For the strain Si engineering, this technology basically contains biaxial (global) strain and uniaxial (local) strain. The biaxial strain is a 2-D effect on device. Through the adjustment of the contact etch stop layer, CESL, process, the strain on device can be tensile or compressive. Although devices were fabricated on the same substrate, the strain effect depends on the channel lengths because the stress effect is a vector summation. Therefore, the uniformity of device performance is a task force. If the channel length for device is only impacted by one-direction stress, this phenomenon is called uniaxial strain or local strain. Generally, the biaxial strain is possible to simultaneously improve the performance of nMSFETs and the pMOSFETs. However, the uniaxial strain just can promote one and degrade the other.
In this work, the electrical characteristics of <110> MOSFETs with biaxial tensile and compressive strain processes influencing the channel mobility will be investigated. Through the analysis of experimental data, the impact effect for different channel-length devices correlated to the biaxial strain engineering will be demonstrated, including the driving current, the relationship between channel resistance and different channel lengths and the driving current with channel resistance. Finally, the uniformity of channel resistance will be probed, too.

摘要 I
Abstract II
誌謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 2
第二章 元件物理 3
2.1 半導體材料介紹 3
2.2 N型與P型半導體 5
2.3 載子的傳輸現象 7
2.4 P-N接面 8
2.4.1 擴散電流 9
2.4.2 空乏區的形成 11
2.4.2 空乏區寬度 13
2.5 MOSFET元件基本架構 14
2.6 理想的MOSFET能帶圖 16
2.7 理想的MOSFET元件 17
2.8 MOSFET特性曲線 21
2.8.1 MOSFET輸出特性曲線 21
2.8.2 MOSFET轉移特性曲線 27
2.9 米勒指數 30
2.9.1 半導體材料 30
2.9.2 半導體晶體結構 30
2.9.3 米勒指數 31
2.9.4 表面密度 32
第三章 應變矽元件 35
3.1 應變矽簡介 35
3.2 全區應變矽介紹 36
3.2 局部應變矽介紹 41
3.3 應變矽面臨之問題 46
3.3 應變矽的應用 47
第四章 實驗說明與結果 49
4.1 實驗架構說明 49
4.2 實驗器材說明 50
4.2.1 六吋半導體手動探針量測平台(Probe station) 50
4.2.2 半導體參數分析儀Agilent 4156C 52
4.2.3 低洩漏開關主機Agilent E5250A 54
4.3 元件介紹 56
4.4 實驗條件 58
4.5 實驗結果 59
第五章 結論 70
參考文獻 72
作者簡介 75

1. Nayfeh, S. Kilpatrick, M. Dubey, “Majority and minority carrier mobility behavior and device modeling of doped CVD monolayer graphene transistors,” Device Research Conference (DRC), 2010, pp. 83-84, 2010.
2. H. Itokawa, “Contributionxc of carbon to growth of strained silicon, dopant activation and diffusion in silicon,” Junction Technology (IWJT), 2010 International on Workshop, pp.1-6, 2010.
3. A.T. Pham, C. Jungemann, B. Meinerzhagen, “Simulation of Mobility Variation and Drift Velocity Enhancement Due to Uniaxial Stress Combined with Biaxial Strain in Si PMOS,” Computational Electronics, 2009. IWCE '09. 13th International Workshop, pp.1-4, 2009.
4. T. Irisawa, T. Numata, T. Tezuka, K. Usuda, N. Hirashita, N. Sugiyama, E. Toyoda, S.-I. Takagi, “High-Performance Uniaxially Strained SiGe-on-Insulator pMOSFETs Fabricated by Lateral-Strain-Relaxation Technique,” IEEE Trans. Electron Devices, vol. 53 (11), pp. 2809-2815, 2006.
5. Kuo-Young Hung, Haskel, “第二章 半導體物理與材料”。
6. 蔡淑惠,“半導體工程精選”,五南出版社,2007年。
7. 劉傳璽、陳進來,“半導體元件物理與製程理論與實務”,五南出版社,2008年。
8. M.M.A. Hakim, A. Abuelgasim, L. Tan, C.H. de Groot, W. Redman-White, S. Hall, P. Ashburn, “Improved Drive Current in RF Vertical MOSFETS Using Hydrogen Anneal, ” IEEE Electron Device Letters, vol. 32 (3), pp. 279-281, Mar. 2011.
9. 郭正聞,“應變矽N型金氧半場效電晶體內鍺含量與矽覆蓋層厚度的探討”,正修科技大學,碩士論文,2007年。
10. 林宏年、呂嘉裕、黃調元,“局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS)之材料、製程與元件特性分析(II) ”,交通大學電子所。
11. 林宏年、呂嘉裕、黃調元,“局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS)之材料、製程與元件特性分析(I) ”,交通大學電子所。
12. 王振安,“具應變技術之90奈米SOI互補式金氧半場效電晶體特性分析與可靠度研究”,國立高雄大學,碩士論文,2007年。
13. Su, V.C., Kuo, J.B., Lin, I.S., Lin Guan-Shyan, Chen, D.C., Yeh Chune-Sin, Tsai Cheng-Tzung, Ma, M, “Shallow-Trench-Isolation (STI)-Induced Mechanical-Stress-Related Kink-Effect Behaviors of 40-nm PD SOI NMOS Device,” Electron Devices, on IEEE ransactions , vol. 55 (6), pp.1558-1562, 2008.
14. Kidan Bae, Minjung Jin, Hajin Lim, Lira Hwang, Dongseok Shin, unekyun Park, Jinchul Heo, Jongho Lee, Jinho Do, Ilchan Bae, Chulhee Jeon, Jongwoo Park, “Behaviors and physical degradation of HfSiON MOSFET linked to strained CESL performance booster,” Reliability Physics Symposium (IRPS), 2011 IEEE International , pp.PL.1.1-PL.1.5, 2011.
15. Li Ming-yen, Chen Jei-Ming, Liu Chih-Chien, Lin Jin-Fu, “CESL-Stressor-Induced Morphological Instability of Pt-Dissolved Ni Germanosilicide Formed on Silicon Germanium Epilayer,” Electron Device Letters, IEEE, vol. 32 (12), pp.1725-1727, 2011.
16. Huang Chien-Chao, Chen Hao-Yu, Chen Hung-Keng, Lee Sanboh, “An Investigation of the Effect of Elastic Constants of Spacer in n-FETs CESL Stressor,” Electron Device Letters, IEEE , vol. 31 (7), pp.638-640, 2010.
17. Chang Wen-Teng, Wang Chih-Chung, Lin Jian-An, Yeh Wen-Kuan, “External Stresses on Tensile and Compressive Contact Etching Stop Layer SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 57 (8), pp.1889-1894, 2010.
18. J. Suh, R. Nakane, N. Taoka, M. Takenaka, S.Takagi, “Highly-strained SGOI p-channel MOSFETs fabricated by applying Ge condensation technique to strained-SOI substrates,” Device Research Conference (DRC), 2011 69th Annual, pp.235-236, 2011.
19. N. Sugiyama, S. Nakaharai, N. Hirashita, T. Tezuka, Y. Moriyama, K. Usuda, S. Takagi, “Formation of SGOI Structures with Low Dislocation Density by Two Step Oxidation and Condensation Method, ” SiGe Technology and Device Meeting ,2006.
20. J.P. de Souza, S.W. Bedell, H.J. Hovel, K. Fogel, A. Reznicek, D.K. Sadana, “Single Wafer sSOI by SIMOX, ” SiGe Technology and Device Meeting, 2006. ISTDM 2006. Third Internationa l, 2006.
21. S.F. Feste, J. Knoch, S. Habicht, D. Buca, Q.T. Zhao, S. Mantl, “Performance enhancement of uniaxially-tensile strained Si NW-nFETs fabricated by lateral strain relaxation of SSOI, ” Ultimate Integration of Silicon, 2009. ULIS 2009. 10th International Conference on, 2009.
22. A.E. Cohen, K.K. Parhi, “Side channel resistance quantification and verification,” Electro/Information Technology, 2007 IEEE International Conference on, pp.130-134, 2007.
23. H. Singh, R.K. Sarin, S. Singh, “Analysis and modeling of 1/f noise in mosfets: The joint effect of channel length and channel resistance,” Devices, Circuits and Systems (ICDCS), 2012 International Conference on, pp.395-399, 2012.
24. M. Craciun, A. Rusu, D. Bogdan, L. Dobrescu, “MOS saturation model based on channel resistance,” Semiconductor Conference (CAS), 2011 International, vol. 2, pp.373-376, 2011.
25. M. Stöttinger, S.A. Huss, S. Mühlbach, A. Koch, “Side-Channel Resistance Evaluation of a Neural Network Based Lightweight Cryptography Scheme,” Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on, pp.603-608, 2010.
26. R. Mishra, S. Mitra, R. Gauthier, D.E. Ioannou, “NBTI and Concurrent HCI-NBTI Degradation of 65 nm SOI PMOSFETs,” SOI Conference, 2007 IEEE Internationa , pp.81-82, 2007.
27. J.M. Roux, X. Federspiel, D. Roy, P. Abramowitz, “Correction of Self-Heating for HCI Lifetime Prediction,” Reliability physics symposium, 2007. Proceedings. 45th annual. ieee international , pp.281-287, 2007.
28. Chun-Chang Lu, Chang-Liao Kuei-Shu, Chun-Yuan Lu, Shih-Cheng Chang, Tien-Ko Wang, “Leakage effect suppression in charge pumping measurement and stress-induced traps in high-k Gated MOSFETs,” Semiconductor Device Research Symposium, 2007 International , pp.1-2, 2007.
29. S. Migita, H. Ota, “Crystallization technique of epitaxial HfO2 thin films on Si substrates and their potential for advanced high-k gate stack technology,” IC Design &; Technology (ICICDT), 2011 IEEE International Conference on , pp.1-4, 2011.
30. Yanli Pei, Chengkuan Yin, T. Kojima, Ji-Cheol Bea, H. Kino, T. Fukushima, T. Tanaka, M. Koyanagi, “MOSFET Nonvolatile Memory with High-Density Cobalt-Nanodots Floating Gate and HfO2 High-k Blocking Dielectric,” Nanotechnology, IEEE Transactions on , vol. 10 (3), pp.528-531, 2011.
31. Xiongfei Yu, Mingbin Yu, Chunxiang Zhu, “The Role of Nitrogen on Charge-Trapping-Induced Vth Instability in HfAlON High-κ Gate Dielectric With Metal and Poly-Si Gate Electrodes,” Electron Devices, IEEE Transactions on , vol. 54 (8), pp.1972-1977, 2007.
32. B. Doris, Y.H. Kim, B.P. Linder, M. Steen, V. Narayanan, D. Boyd, J. Rubino, L. Chang, J. Sleight, A. Topol, E. Sikorski, L. Shi, L. Wong, K. Babich, Y. Zhang, P. Kirsch, J. Newbury, J.F. Walker, R. Carruthers, C. D'Emic, P. Kozlowski, R. Jammy, K.W. Guarini, M. Leong, “High performance FDSOI CMOS technology with metal gate and high-k,” VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on, pp. 214- 215, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top