跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思翰
研究生(外文):Chen Si Han
論文名稱:有機/無機混成光伏打元件之製備與性質探討及摻混奈米粒子對光電轉換效率之影響
論文名稱(外文):Preparation And Characterization Of Organic/Inorganic Hybrid Photovoltaic Devices And Effect Of Blending Nanoparticles On The Photo-Electron Conversion Efficiency
指導教授:游洋雁
指導教授(外文):Yu Yang Yan
口試委員:郭霽慶蔡榮訓
口試委員(外文):Kuo Chi ChingTsai Rung Shium
口試日期:101/07/04
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:有機太陽能電池白金二氧化鈦
外文關鍵詞:organic solar cellPt nanoparticlesTiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究,主要以有機高分子/無機奈米金屬混合材料作為太陽能電池活性層之研究。因為有機高分子材料電荷遷移率較低,所以希望藉由無機奈米金屬的高電荷傳輸率提升太陽能元件效率。對於有機太陽能電池來說,提高壽命仍然是最大的課題,由於PEDOT:PSS為酸性溶液,可能會腐蝕ITO電極, 且PEDOT:PSS暴露在空氣中會吸收水氣降低太陽能電池的壽命。所以第二部分採用熱蒸鍍沉積不同厚度P型半導體氧化物(NiO)取代有機太陽能電池電洞傳輸層(PEDOT:PSS),由於NiO的費米能階與P3HT之HOMO相近所以有較佳之電洞的傳遞能力,最後與PEDOT:PSS壽命最元件壽命比較。 。

無機奈米金屬是採用多元醇還原法將H2PtCl6溶於乙二醇中加熱迴流數小時,即可得奈米級白金粒子。在元件的製作上,其結構為ITO/PEDOT:PSS/P3HT:PCBM:TiO2:Pt /Ca/Al。發現添加適量Pt時可以有效的幫助電荷傳輸。光吸收度的提升能讓更多的電子電洞對在感光層中產生,增加光電流。研究結果顯示0.03wt%奈米Pt加入活性層後,元件的短路電流密度(Jsc)由7.31mA/cm2提升為10.10 mA/cm2,效率從2.19%提升到3.3%,同時 IPCE效率可達到55%。

關鍵詞:混成薄膜、有機/無機太陽能電池、白金奈米粒子

In this study, the organic polymer/inorganic nano-metal hybrid films were prepared and used as the active layer of the solar cells. The use of nano-metal in hybrid films could increase the efficiency of the solar cell due to its high carrier mobility. The limitations of PEDOT:PSS as an anode buffer layer, including being corrosive to transparent conducting oxides, inconsistent film morphology, inefficient electron-blocking performance, and poor stability under ambient conditions. We will demonstrate an enhancement in polymer solar cell performance by just evaporating a thin NiO as a buffer layer. The device performance with NiO of different thicknesses is investigated and compared.
The polyol reduction reaction was applied to synthesize inorganic Pt nanoparticles by dissolving H2PtCl6 in ethylene glycol and refluxing the solvent for several hours. Then, the prepared Pt nanoparticles were used to prepare the solar cells with a structure ITO /PEDOT: PSS/P3HT: PCBM:TiO2: Pt/Ca/Al. The experimental results showed that the short-circuit current density (Jsc) and efficiency of solar cell increased from 7.31mA/cm2 to 10.10mA/cm2 and 2.19% to 3.3%, respectively. In addition, the value of IPCE could reach 55% as 0.03wt% Pt nanoparticles were added into the active layer P3HT: PCBM:TiO2

Keyword: hybrid films, polymer/inorganic, Pt nanoparticles

目錄
明志科技大學碩士學位論文指導教授推薦書………………………………………………I
明志科技大學碩士學位論文口試委員審定書 ……………………………………………II
明志科技大學學位論文授權書 …………………………………………………………………III
誌謝………………………………………………………………………………………………………………IV
摘要 …………………………………………………………………………………………………………… V
Abstract.......................................................................................................................VI
第一章 緒論 1
1-1前言 1
1-2 太陽能電池定義………… …...………………………………………………..………………….2
1-3 無機與有機太陽能電池簡介………………………………….…………….………………2
1-4 有機太陽能電池結構演進…………………………………………………..………..………4
1-4-1 單層結構太陽能電池…………………………………………………………………..8
1-4-2 雙層異質介面結構有機太陽能電池………………………………..………….9
1-4-3 混合層異質介面結構有機太陽能電池…………………………….…….….10
1-5文獻回顧與探討 10
1-5-1常用於製作導電高分子太陽能電池的材料 10
1-5-2 poly(3-hexylthiophene)太陽能電池 13
1-5-3 白金奈米粒子製備…………………...…………………………………..……………20
1-5-4 以P型半導體氧化物取代電洞傳輸層………………………………..…….22
第二章 實驗..................................................................................................................................................26
2-1 藥品…………………..……………………………………..………………………………………..26
2-2 實驗及檢測儀器………………………….………………………………...………………….29
2-2-1 實驗儀器……………………………………………………………….……………...……29
2-2-2 檢測儀器…………………………………………..………………………………….…….29
2-3實驗步驟 34
2-3-1 2,5-二溴-3 烷基噻吩的合成 34
2-3-2 位置規則聚(3-烷基噻吩)的合成 35
2-3-3電洞傳輸層(PEDOT:PSS)之製備 36
2-3-4無機Colloidal Titanium dioxide先驅溶液之製備 38
2-3-5無機Pt奈米金屬之製備(多元醇還原法Polyol method) 38
2-3-6 有機感光層- PHP摻混不同比例Colloidal TiO2奈米粒子(PCT)塗佈液之製備……………………………………………………………………………………………..40
2-3-7 有機感光層- PCT摻混不同比例Pt奈米粒子塗佈液之製備 41
2-4元件製作流程 42
2-4-1 ITO 玻璃基版清洗 42
2-4-2 旋轉塗佈有機感光層 42
2-5實驗檢測項目 43
2-5-1 薄膜型態分析 43
2-5-2熱性質分析 44
2-5-3光學性質分析 44
2-5-4電性分析 45
第三章 結果與討論 47
3-1 P3HT/PCBM/TiO2 奈米粒子(PCT)之有機太陽能電池光電性質研究結果 47
3-2 P3HT:PCBM:TiO2:Pt奈米粒子(PCTP)之有機太陽能電池研究結果 49
3-2-1 薄膜微結構分析 49
3-2-2 薄膜表面形貌分析 53
3-2-3 光學性質分析 55
3-2-3 熱性質分析 58
3-2-4 光電性質分析 60
3-3 電洞傳輸層(NiO)取代PEDOT:PSS之有機太陽能電池研究結果。
3-3-1光學性質分析…………………………………………….……….73
3-3-2薄膜表面形貌分析………………………………………………..74
3-3-3光電性質分析……………………………………………..………75
3-4結論………………………………………………………………………………………………………..84
參考文獻..........................................................................................................................................................85










(1) Hoppea H., Sariciftci N.S., Organic solar cells: An overview , J.Mater. Res. 2004, 19, 1924-1945.
(2) Forrest S.R., The Limits to Organic Photovoltaic Cell Efficiency
MRS BULLETIN. 2005, 30, 28-32.
(3) Nelson J., Organic photovoltaic films, Current Opinion in Solid State and Materials Science. 2002, 6, 87-95.
(4) Dittmer J.J., Marseglia E.A., Friend R.H., Electron Trapping in Dye/Polymer Blend Photovoltaic Cells, Adv.Mater. 2002, 17, 1270-1274.
(5) Peumans P., Forrest S.R., Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 2001, 79, 126-128.
(6) Chirvase D., Chiguvare Z., Knipper M., Parisi J., Dyakonov V.,
Hummelen J.C., Temperature dependent characteristics of poly.3 hexylthiophene.-fullerene based heterojunction organic solar cells, J. Appl. Phys. 2003, 93, 3376-3383.
(7) Tang C.W., Two‐layer organic photovoltaic cell, Appl. Phy. Lett. 1986, 48, 183-185
(8) Yu G., Zhang C., Heeger A.J., Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes, Appl. Phys. Lett. 1994, 64, 1540-1542.
(9) Padinger F., Rittberger R.S., Sariciftci N.S., Effects of Postproduction Treatment on Plastic Solar Cells, Adv. Funct. Mater. 2003, 13, 85-88.

(10) Ryu M.S. et al., Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency, Current Applied Physics. 2010, 10 , S206–S209.
(11) Ismail Y.A.M. et al., Improvement in light harvesting and performance of P3HT:PCBM solar cell by using 9,10-diphenylanthracene, Solar Energy Materials & Solar Cells. 2009, 93, 1582–1586.
(12) Okraku E.W. et al., Pulsed laser annealing of P3HT/PCBM organic solar cells, Solar Energy Materials & Solar Cells. 2010, 94, 2013–2017.
(13) Ouyang J.et al., High-performance polymer photovoltaic cells with thick P3HT: PCBM films prepared by a quick drying process, Solar Energy Materials & Solar Cells. 2009, 93, 1592–1597.
(14) Keawprajak A. et al., Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells. Solar Energy Materials & Solar Cells. 2010, 94, 531–536.
(15) Shen Y. et al., Bulk and contact resistance in P3HT:PCBM heterojunction solar cells. Solar Energy Materials & Solar Cells, 2011, 95, 2314–2317.
(16) Somani P.R.et al., Application of metal nanoparticles decorated carbon nanotubes in photovoltaics. APPLIED PHYSICS LETTERS, 2008, 93,
033315-1-03315-3.
(17) Wang S.J. et al., Properties of one-step synthesized Pt nanoparticle-doped poly(3,4-ethylenedioxythiophen):poly(styrenesulfonate) hybrid films, Thin Solid Films. 2010, 518, 7185–7190.
(18) Chang M.Y., Chen Y.F., Tsai Y.S., Chib K.M., Blending Platinum Nanoparticles into Poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric Acid Methyl Ester Enhances the Efficiency of Polymer Solar Cells, Journal of The Electrochemical Society. 2009, 156 (2), B234-B237.
(19) Betancur R. et al., Sputtered NiO as electron blocking layer in P3HT:PCBM solar cells fabricated in ambient air, Solar Energy Materials & Solar Cells. 2011, 95, 735–739.
(20) Steirer K.X. et al., Solution deposited NiO thin-films as hole transport layers in organic photovoltaics, Organic Electronics. 2010, 11, 1414–1418.
(21) Irwin M.D. et al., p-Type semiconducting nickel oxide as an
efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, PNAS. 2008, 105, 2783–2787.
(22) Park S.Y., Kim H. R., Kang Y.J., Kim D.H., Kang J.W., Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer, Solar Energy Materials & Solar Cells. 2010, 9, 2332–2336.
(23) Yu W., Shen L., Ruan S., Meng F., Wang J., Zhang E., Chen W., Performance improvement of inverted polymer solar cells thermally
evaporating nickel oxide as an anode buffer layer, Solar Energy Materials & Solar Cells, 2012, 98, 212–215.
(24) Baek W.H. et al., Hybrid inverted bulk hetero junction solar cells with nano imprinted TiO2 nanopores, Solar Energy Materials & Solar Cells. 2009, 93, 1587–1591.
(25) Wu M.C. et al., Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices, Solar Energy Materials & Solar Cells. 2009, 93, 869–873.
(26). 秦興國, 二氧化鈦奈米粒子摻混於有機感光層以提升高分子/富勒烯單層異質接面太陽能電池之光電轉換效率, 國立成功大學化學工程
研究所,(2006)。

(27) Kim J.Y. et al., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 2006, 18, 572–576.
(28)吳奉修, 無機奈米金屬/共軛高分子混層材料作為高分子太陽能電池之研究, 國立中山大學光電工程學系,(2009)。
(29) Keawprajak A. et al., Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells, Solar Energy Materials & Solar Cells. 2010, 94, 531–536.
(30)1Shrotriya1V.1et1al.,1Absorption1spectra1modification1in1poly(3-hexylthiophene):methanofullerene blend thin films, Chemical Physics Letters. 2005, 411 , 138–143.
(31) Li G. et al., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly3-hexylthiophene , JOURNAL OF APPLIED PHYSICS. 2005, 98, 043704.
(32) Wang M. et al., P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative, Solar Energy Materials & Solar Cells. 2007, 91, 1782–1787.
(33) kim Y. et al., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, nature materials. 2006, 5,1782–1787.
(34) Ouhib F. et al., Photovoltaic cells based on polythiophenes carrying lateral phenyl groups, Thin Solid Films. 2008, 516 ,7199–7204.
(35) Lenes M., Morana M., Brabec C. J., Blom P.W.M., Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells, Adv. Funct. Mater. 2009, 19, 1106–1111.
(36) Nicolai H.T. et al., Space-charge-limited hole current in poly(9,9-dioctylfluorene) diodes, Appl. Phys. Lett. 2010, 96, 172107 .
(37) Ma W. et al., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Adi. Funct. Mater. 2005, 15, 1617—1622.
(38) Li G. et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, nature materials. 2005, 4, 864—868.
(39) Vanlaeke P. et al., P3HT/PCBM bulk heterojunction solar cells:Relation between morphology and electro-optical characteristics, Solar Energy Materials & Solar Cells. 2006, 90, 2150–2158.
(40).廖啟鈞, “改變陰極對有機薄膜太陽能電池研究”,國立台灣科技大學電子工程系(2007)。
(41) Scharber M.C., Mühlbacher D., Koppe M., Denk P., Waldauf C., Heeger A.J., Brabec C.J., Design Rules for Donors in Bulk-Heterojunction Solar
Cells—Towards 10% Energy-Conversion Efficiency, Adv. Mater. 2006, 18, 789–794.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊