跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏穎
研究生(外文):Chen, Boying
論文名稱:奈米結構陶瓷薄膜設計及其光電應用研究
論文名稱(外文):Designed Nanostructured Ceramic Thin Films for Optical and Electrical Applications Research
指導教授:盧榮宏
指導教授(外文):Lu, Jonghong
口試委員:張育嘉莊弘毅
口試委員(外文):Chang, YuchiaChuang, Jerry
口試日期:2012-07-17
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:188
中文關鍵詞:奈米複層結構奈米複合結構功能性裝飾膜功能性高透光基板帶通濾光片
外文關鍵詞:Nano-Multi-LayerNano-compositeDecorative coatingsHigh transparent conductive substrateOptical band-pass filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用反應式磁控濺鍍法製備 TiO2/ITO 與 SiOx/ITO 奈米複層(Nano-Multi-Layer,NML)結構薄膜及 TiO2 多相(Rutile, Anatase)與 TiN-TiOx奈米複合(Nano-Composite)結構薄膜,我們可進行調控透光導電薄膜的折射率與電阻率及操控材料載子濃度與光學常數。以運用薄膜多光束干涉及遞歸方法來對功能性高透光基板、功能性裝飾薄膜及光學帶通濾光片等應用例進行理論與實驗的研究探討。
使用三層高透光設計,以 ITO/Ag/ITO 架構製備低片電阻 10Ω/□、平均透光率(400-700nm) 87%的透光導電薄膜,藉由 TiO2/SiOx 奈米複層折射率調控與雙面鍍膜設計可製作出平均穿透率 97%的高透光玻璃基板。另以ITO/TiO2 複層結構於基板雙面製備導電一維光子晶體形成帶通濾光片,其穿透峰為 80%、半高寬控制(△λh/λ0 )為 9%,片電阻值則為 14.33 Ω/□。
使用金屬材料進行功能性塗裝膜設計,以 ITO/Ag 複層膜可製備出屏蔽電磁波訊號的彩色透光金屬薄膜,其片電阻值可低至5Ω/□。利用AlNx/TiN 複層薄膜於高反射的鋁膜上,可締造出環保且色彩豐富的彩色硬膜,其顏色反射率可大於80%,整體硬度值能高於 20GPa。藉以低折射率SiOx 與 TiON 形成複層膜,製作出可見光平均反射率<3%、穿透率約 18% 的抗反射吸收膜。

關鍵字:奈米複層結構、奈米複合結構、功能性裝飾膜、功能性高透光基板、帶通濾光片
In this thesis, Nano-Multi-Layer(NML) and Nano-Composite(NC) films were fabricated by reactive magnetron sputtering method. The optical complex refractive indices, electric carrier concentrations, and electric resistivities of the physical materials parameters were manipulated with NML and NC structures for the industrial application studies. With theory simulations and experimental analyses, the applied researches are including functional high transparent substrate, functional decorative films, anti-reflective absorption films, and optical band-pass filter.
For the functional high transparent substrate studies, double-side anti-reflective coating of about 97% transmittance, and ITO/Ag/ITO transparent conductive substrates of less than 10Ω/□ and 87% transmittance were achieved.
For the functional decorative coatings, colorful hard films with hardness of 20GPa over wide color ranges, and colorful conductive films by ITO/Ag NML with a low sheet resistance of 5Ω/□ were obtained.
For the anti-reflective absorption films, SiOx /TiON NML structures with low reflectance of 2.72% and transmittance of about 18%, it appeared the black color.
For the optical band-pass filter, double-side 1-D photonic structure coatings on glass substrates were made with 80% transmittance at wavelength 525 nm and Δλ/λ 9%.

Keywords: Nano-Multi-Layer, Nano-composite, Decorative coatings, High transparent conductive substrate, Optical band-pass filter
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌 謝 iv
中文摘要 v
ABSTRACT vi
目錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
第二章 奈米結構材料設計 5
2.1 單層薄膜的特性分析 7
2.1.1 ITO透光導電薄膜 7
2.1.2 TiO2、SiOx、AlNx 透明介電薄膜 18
2.1.3 Ag、TiN、Al金屬薄膜 25
2.2奈米複層結構透光導電薄膜 32
2.2.1 TiO2/ITO奈米複層結構薄膜 33
2.2.2 SiOx/ITO奈米複層結構薄膜 35
2.3 奈米複合結構 41
2.3.1 TiO2多相(Rutile, Anatase)奈米複合結構薄膜 41
2.3.2 TiN-TiOx(TiON) 奈米複合結構薄膜 44
第三章 薄膜多光束干涉及遞歸法理論運算 46
3.1 單層薄膜光學的理論運算 46
3.2 多層薄膜的光學理論運算 53
3.3 薄膜於基板上的反射率與穿透率計算 57
3.4 X光反射對單層薄膜厚度分析 64
3.5 薄膜折射率建立 71
3.6 橢圓儀的理論分析 75
第四章 金屬薄膜的色彩設計 82
4.1 彩色金屬薄膜 84
4.1.1 ITO/Ag彩色透光金屬薄膜 84
4.1.2 ITO/TiN彩色金屬薄膜 88
4.2 彩色硬膜 91
4.2.1 AlNx/TiN複層結構薄膜 91
4.2.2 AlNx/TiN-Al複層結構薄膜 93
4.2.3 AlNx/TiN彩色硬膜硬度分析 97
4.3 抗反射吸收膜 102
4.3.1 SiOx/TiON複層結構薄膜 102
第五章 功能性高透光基板 104
5.1 超高透光玻璃基板 104
5.1.1 玻璃基板與康寧基板的特性分析 104
5.1.2 高透光玻璃基板設計 105
5.1.3 雙層高透光玻璃基板 107
5.1.4 三層高透光玻璃基板 108
5.1.5超高透光玻璃基板模擬設計 111
5.1.6超高透光玻璃基板實驗與製程窗口分析 113
5.2 高透光導電基板 136
5.2.1 高透光導電基板模擬設計 136
5.2.2 ITO/Ag/ITO透光導電薄膜 139
5.2.3 三層透光導電基板 141
第六章 帶通濾光片的設計與應用 142
6.1 導電一維光子晶體 142
6.2 導電帶通濾光片 146
第七章 結論 149
參考文獻 151
A. Matlab簡介與人機介面介紹 157
B. 彩色金屬薄膜模擬程式 161
C. 功能性高透光基板模擬程式 165
C.1 功能性高透光基板模擬程式使用說明 177
D. X光反射(XRR)模擬程式 181
D.1 X光反射(XRR)模擬程式使用說明 186


(1) Bender M., Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, Thin Solid Films. 1998, 326, 72-77.
(2) Kim H., Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, J. Appl. Phys. 1999, 86, 6451-6461.
(3) Ban T., Ohya Y., Tin doped indium oxide thin films: Electrical properties, J. Appl. Phys. 1998, 83, 2631-2645.
(4) Gorjanc T.C., Room temperature deposition of ITO using r.f. magnetron sputtering, Thin Solid Films. 2002, 413, 181-185.
(5) 王志軒(2010),「奈米複層結構透光導電薄膜」,明志科大碩士論文。
(6) Sahu D.R., ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode, Applied Surface Science. 2006, 252, 7509-7514.
(7) Lin Y.S., Effect of Al Nanoparticles on the Microstructure, Electrical, and Optical Properties of AZO/Al/AZO Trilayer Thin Film, Journal of Electronic Materials. 2012, 41, 437-441.
(8) Ki K.H., Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells, Solar Energy Materials & Solar Cells. 2009, 93, 1801-1809.
(9) Jin C.H., Single and dual-ion-beam sputter deposition of titanium oxide films, Applid Optics. 1998, 37, 1171-1176.
(10) Lee C.C., Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition, Applied Optics. 2005, 44, 2996-3000.
(11) Wu J.Y., Lee C.C., Effect of the working gas of the ion-assisted source on the optical and mechanical properties of SiO2 films deposited by dual ion beam sputtering with Si and SiO2 as the starting materials, Applied Optics. 2006, 45, 3510-3515.
(12) Lee C.C., Jan D.J., DC magnetron sputtering of Si to form SiO2 in low-energy ion beam, Vacuum. 2006, 80, 693-697.
(13) Bruggeman D.A.G., Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen, Ann. Physik. 1935, 24, 636-664.
(14) Zhong Y., Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition, J. Mater. Res. 2008, 23, 2500-2505.
(15) Xi J.Q., Kim J.k., Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods, Optics Letters. 2006, 31, 601-603.
(16) PKH H., Thomas D.S., All-Polymer Optoelectronic Devices, Science. 1999, 285, 233-236.
(17) Chao S., Wang W.H., Lee C.C., Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films, APPLIED OPTICS. 2011, 40, 2177-2182.
(18) 盧榮宏,王志軒,彭昱淳,陳和聲,陳柏穎,黃鈺成,李政烘(2010),「陶瓷薄膜光學與陶瓷積體電路的基磐應用技術研究」,第八屆台塑關係企業應用技術研討會。
(19) Lu J.G., Fujita S., Carrier concentration dependence of band gap shift in n-type ZnO:Al films, JOURNAL OF APPLIED PHYSICS. 2007, 101, 083705.
(20) Furubayashi Y., A transparent metal: Nb-doped anatase TiO2, APPLIED PHYSICS LETTERS. 2005, 86, 252101.
(21) Miao L., Jin P., Kaneko K., Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering, Applied Surface Science. 2003, 212, 255-263.
(22) Yanga S.M., Hsieh Y.C., Jeng C.A., Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays, J. Vac. Sci. Technol. A. 2009, 27, 336-341.
(23) Sameer Chhajed, Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics, APPLIED PHYSICS Express. 2011, 4, 052503.
(24) Park J.H., Kim H.k., Lee H., Highly ranspareTnt, Low Resistance, and Cost-Efficient Nb:TiO2 / Ag / Nb:TiO2 Multilayer Electrode Prepared at Room Temperature Using Black Nb:TiO2 Target, Electrochemical and Solid-State Letters. 2010, 13, J53-J56.
(25) Zheng Y.F., KiKuchi K., Yamasaki M., Two-layer wideband antireflection coatings with an absorbing layer, APPLIED OPTICS. 1997, 36, 6335-6338.
(26) Cho S.H., Seo M.k., Kang J.H., A Black Metal-dielectric Thin Film for High-contrast Displays, Journal of the Korean Physical Society. 2009, 55, 501-507.
(27) 林偉琨(2005),「奈米複層結構陶瓷薄膜之物性研究」,明志科技大學材料工程研究所碩士論文。
(28) 王志軒、陳柏穎、鄭春德、盧榮宏,「透明導電薄膜的折射率調控及其應用」,中華民國材料年會,2010,457,19-20。
(29) EUGENE HECHT, ALFRED ZAJAC, "Optics“, 1973, pp. 72-75.
(30) 李正中,薄膜光學與鍍膜技術(第一版),1999,pp. 41.
(31) 盧榮宏、陳柏穎、楊錫明、鄒華中,「XRR及FE-SEM對奈米複層結構薄膜的檢測探討」,中華民國材料年會,2010,459,19-20。
(32) Parratt L.G., Surface Studies of Solids by Total Reflection of X-Rays, Physical Review. 1954, 95, 359-369.
(33) Vidal B., Vincent P., Metallic multilayers for x rays using classical thin-film theory, APPLIED OPTICS. 1984, 23, 1794-1801.
(34) Azzam R.M.A., Bashara N.M., “Ellipsometry and polarized light 1st ”, 1987, pp. 270-289.
(35) Oliver W.C., Pharr G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 1992, 7, 1564-1583.
(36) Fink Y., Winn J.N., Fan S.H., A Dielectric Omnidirectional Reflector, IENCE. 1998, 282, 1679-1682.
(37) Lee H.Y., Yao T., Design and evaluation of omnidirectional one-dimensional photonic crystals, J. Appl. Phys. 2003, 93, 819-830.
(38) Xi J.Q., Kim J.K., Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material, APPLIED PHYSICS LETTERS. 2007, 90, 141115.
(39) Lee C.C., Li M.C., Chen S.H., Transparent Conductive Distributed Bragg Reflectors Composed of High and Low Refractive Index Transparent Conductive Films, Japanese Journal of Applied Physics. 2012, 51, 052602.
(40) Hawkeye Matthew M., Brett Michael J., Narrow bandpass optical filters fabricated with one dimensionally periodic inhomogeneous thin films, JOURNAL OF APPLIED PHYSICS. 2006, 100, 044322.
(41) 盧榮宏,陳柏穎,李晏伃,施采妏,程柏叡,王志軒,「陶瓷薄膜光學之光學元件技術開發」,第八屆台塑關係企業應用技術研討會,2011,June 23。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top