跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏志偉
研究生(外文):Yan,Jhih-Wei
論文名稱:臺北捷運系統高架車站與地下車站懸浮微粒濃度差異性探討
論文名稱(外文):Comparisons of particulate matter levels in underground and ground elevated stations in the Taipei mass rapid transit system
指導教授:程裕祥程裕祥引用關係
指導教授(外文):Cheng,Yu-Hsiang
口試委員:林啟琪劉禎淑
口試委員(外文):Lin,Chi-ChiLiu,Chen-Shu
口試日期:2012-06-04
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與資源工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:臺北捷運系統PM10PM2.5超細微粒CO2
外文關鍵詞:Taipei mass rapid transit systemPM10PM2.5Ultrafine particulateCO2
相關次數:
  • 被引用被引用:3
  • 點閱點閱:665
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
截至2012年,臺北捷運系統每天約有150萬人次搭乘,已成為臺北都會區主要的交通工具。然而,懸浮微粒已被證實對人體健康有著重大影響,但對於臺北捷運系統高架和地下環境的室內空氣品質的相關研究卻是極為鮮少。因此為了探討臺北捷運系統高架車站與地下車站及列車內之PM10、PM2.5、超細微粒濃度的差異性,本研究在同一條高運量捷運路線中的地下車站(臺北車站)、半地下車站(民權西路站)與高架車站(劍潭站)及列車內使用攜帶式監測器來測量PM10、PM2.5、超細微粒、一氧化碳和二氧化碳濃度及其粒徑的分佈。
測量結果發現PM10與PM2.5無論是在列車內或地下車站環境皆顯著高於高架車站環境,其地下車站環境的懸浮微粒,可能源自於機械摩擦過程所產生並累積在近密閉空間,懸浮微粒在高架車站環境則會隨著戶外的空氣流動而稀釋。列車內PM10與PM2.5濃度則顯著地受到行經環境的影響。然而,列車內與地下車站環境的超細微粒濃度測量結果卻顯著低於高架車站環境,其主要原因為地下環境並無存在超細微粒的排放源,但在戶外的高架環境則顯著受到當地交通的影響而濃度相對提高。從測量結果發現PM10、 PM2.5濃度與超細微粒濃度在不同地點會呈現不同的結果,主要是受到當地環境條件的影響。
另外,分析結果顯示在車站地面上的室內環境與戶外入口環境無論是在PM10、PM2.5或超細微粒皆呈顯著正相關。然而,在地下環境不管是PM10、PM2.5或超細微粒則與戶外環境呈現顯著的差異,在車站的高濃度粗懸浮微粒則是受到乘客在室內活動造成的再懸浮揚塵等因素造成。此外,在地下環境CO2濃度顯著高於高架的環境,且CO2濃度與乘客人數顯著的相關,地下環境與列車內的CO2濃度則已超越環保署標準,其原因為地下環境與列車內換氣率明顯不足。

Up to 2012, a daily average of approximately 1.5 million passengers traveled by the Taipei mass rapid transit (MRT) system, which has become the main mode of transport in the urban areas of Taipei. It has been shown that suspended particulates have a significant impact on human health. However, related research on indoor air quality in elevated and underground stations of Taipei MRT is extremely rare. Therefore, in order to explore the differences in the concentrations of PM10, PM2.5 and ultrafine particulates in the elevated and underground stations and the trains of the Taipei MRT, this study measured the concentrations of PM10, PM2.5, ultrafine particulate, CO, and CO2 and the particle size distributions using the portable monitors in the underground (Taipei main station), semi-underground (Minquan W. Rd. station) and elevated(Jiantan station) stations and in trains on the same MRT line.
The results show that the concentrations of PM10 and PM2.5 in the train and in the underground station were significantly higher than that those in the elevated station. The concentration of PM in the underground station was higher than in the elevated station possibly because the suspended particulates formed by mechanical friction were accumulated in a nearly closed space. Additionally, concentration of PM was reduced in the outdoor environment due to air dilution. In the train, the concentration of PM was significantly affected by the passing through environment. On the other hand, the concentrations of ultrafine particulates in the train and in the underground station were significantly lower than that in the elevated station. This was mainly because the underground station had no source for the emission of ultrafine particulates whereas the elevated station had a higher concentration owing to local traffic. It was found that the different concentrations of PM10, PM2.5 and ultrafine particulate at different locations were mainly because of the effects of the local environment.
According to the measurement results, the indoor concentrations of PM10, PM2.5 and ultrafine particulate in the ground station were similar to the outdoor concentrations; however, in the underground station, there were a significant difference between the indoor and outdoor concentrations. The high concentration of coarse suspended particulates at the station was because of the re-suspension of fugitive dust caused by indoor passenger activity. In addition, the concentration of CO2 in the underground station was significantly higher than that in the elevated station, and it was strongly related to the number of passengers. The concentration of CO2 exceeded the EPA standard because the ventilation was insufficient.

明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
中文摘要 v
Abstract vi
目錄 viii
表目錄 x
圖目錄 xi
第一章 前言 1
1.1 研究起源 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 懸浮微粒的定義與來源 4
2.2 懸浮微粒對人體健康的影響 5
2.2.1 懸浮微粒對人體健康的危害 6
2.2.2 超細微粒(UFP)對人體健康的危害 7
2.3 國內外地鐵系統懸浮微粒濃度 8
2.3.1 國內外地鐵系統PM10 與PM2.5 的濃度 8
2.3.2 國內外地鐵系統超細微粒(UFP)濃度 12
2.4 國內外地鐵環境與戶外環境懸浮微粒濃度差異 14
2.5 地鐵系統懸浮微粒可能的來源 17
2.6 國內外地鐵懸浮微粒之粒徑分佈 20
第三章 研究方法 23
3.1 捷運系統地點之測量環境與路線敘述 23
3.1.1 測量方法與架構 23
3.1.2 測量地點規劃與周遭環境敘述 26
3.2 測量儀器設備 33
3.2.1 Grimm Aerosol Spectrometer Model 1.108 OPC 33
3.2.2 TSI Model 3007 CPC 35
3.2.3 TSI Model 7565X Q-TRAK 38
3.3資料分析與應用 40
第四章 結果與討論 43
4.1 比較不同類型捷運車站PM10 與PM2.5濃度差異與相關性 43
4.1.1 PM10 與PM2.5 在不同類型車站的濃度差異 43
4.1.2列車在地下與高架環境的PM10與PM2.5濃度差異 55
4.2 比較不同類型捷運車站超細微粒(UFP)濃度差異與相關性 62
4.2.1 超細微粒(UFP)在不同類型車站的濃度差異 62
4.2.2 列車在地下與高架環境的超細微粒(UFP)濃度差異 68
4.3 比較不同類型捷運車站的粒徑分佈和PM2.5/PM10比值 73
4.3.1 比較三個不同類型捷運車站的粒徑分佈和PM2.5/PM10比值 73
4.3.2 列車在地下與高架環境的粒徑分佈與PM2.5/PM10比值 82
4.4 其它空氣品質參數的比較 87
4.4.1 比較三個不同類型捷運車站的其它空氣品質參數 87
4.4.2 列車在地下與高架環境的二氧化碳濃度差異性探討 95
4.5 比較世界各地地鐵系統的懸浮微粒 102
第五章 結論與建議 105



Adams, H.S.;Nieuwenhuijsen, M.J.;Colvile, R.N.;McMullen, M.A.S.; Khandelwal, P. Fine particle (PM2.5) personal exposure levels in transport microenvironments. Sci. total environ. 2001, 279, 29-44.
Aarnio, P.;Yli-Tuomi, T.;Kousa, A.;Mäkelä T.; Hirsikko, A.;Hämeri, K.;Päisänen, M.;Hillamo, R.;Koskentalo, T.;Jantunen, M. The concentrations and composition ofand exposure to fine particles(PM2.5) in the Helsinki subway system. Atmos. environ. 2005, 39, 5059-5066.
Asmi, E.;Antola, M.;Yli-Tuomi, T.;Jantunen, M.;Aarnio, P.;Mäkelä, T.;Hillamo,R.;Hämeri, K. Driver and passenger exposure toaerosol particles in buses and trams in Helsinki, Finland. Sci. total environ. 2009, 407, 2860-2867.
Braniš, M. (2006). The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system. Atmos. environ. 2006, 40, 348-356.
Boudia, N.;Halley, R.;Kennedy, G.;Lambert, J.;Gareau, L.;Zayed, J. Manganese concentrations in the air of the Montreal (Canada) subway in relation tosurface automobile traffic density. Sci. total environ. 2006, 366, 143-147.
Brunekreef, B.;Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1342.
Beckerman, B.;Jerrett, M.;Brook, J.R.;Verma, D.K.;Arain, M.A.;Finkelstein, M.M. Correlation of nitrogen dioxide with other trafficpollutants near a major expressway. Atmos. environ. 2008, 42, 275-290.
Boogaard, H.;Borgman, F.;Kamminga, J.;Hoek, G. Exposure toultrafine and fine particles and noise during cycling and driving in 11 Dutch cities. Atmos. environ. 2009, 43, 4234-4242.
Birenzvige, A.;Eversole, J.;Seaver, M.;Francesconi, S.;Valdes,E.;Kulaga, H. Aerosol characteristics in a subway environment. Aerosol sci. tech. 2003, 37 (3), 210-220.
Campbell, A. Inflammation,neurodegenerative diseases,and environmental exposures. Protective Strategies for Neurodegenerative Diseases 2004, 1035, 117-132.
Chan, L.Y.;Lau, W.L.;Lee, S.C.;Chan, C.Y. Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. environ. 2002a, 36, 3363-3373.
Chan, L.Y.;Lau, W.L.;Zou, S.C.;Cao, Z.X.;Lai, S.C. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China. Atmos. Environ. 2002b , 36, 5831-5840.
Chillrud, S.N.;Epstein, D.;Ross, J.M.;Sax, S.N.;Pederson, D.;Spengler, J.D.;Kinney P.L. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ. sci. technol. 2004, 38 (3), 732-737.
Chan, C.C.;Chuang, K.J.;Shiao, G.M.;Lin, L.Y. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ. health perspect. 2004, 112, 1063-1067.
Cheng, Y.H.;Lin, Y. L.;Liu, C.C. Levels of PM10 and PM2.5 in Taipei rapid transit system. Atmos. environ. 2008, 42, 7242–7249.
Cheng, Y.H.;Liu, C.C.;Lin, Y. L . Levels of ultrafine particles in the Taipei rapid transit system. Transportation Research Part D-Transport and Environment 2009, 14, 479-486.
Cheng, Y.H.;Lin, Y.L. Measurement of particle mass concentrations and sizedistributions in an underground station. AAQR. 2010, 10, 22-29.
Cheng, Y.H.;Li, Y.S. Influence of traffic emissions and meteorological conditions on ambient PM10 and PM2.5 levels at a highway toll station. AAQR. 2010, 10, 456-462.
Cheng, Y.H.;Chang, H.P.;Hsieh C.J. Short-term exposure to PM10, PM2.5,ultrafine particles and CO2 for passengers at an intercity bus terminal. Atmos. environ. 2011, 45, 2034-2042.
Delfino, R.J.;Sioutas, C.;Malik, S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. health perspect. 2005, 113(8), 934-946.
Dominici, F.;Peng, R.D.;Bell, M.L.;Pham, L.;McDermott, A.;Zeger, S.L.;Samet,J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J. Am. Med. Assoc. 2006, 295, 1127-1134.
Donaldson, K.;Brown, D.;Clouter, A.;Duffin, R.;MacNee, W.;Renwick,L.;Tran,L.;Stone, V. Pulmonarytoxicology of ultrafine particles. Journal of Aerosol Medicine—Deposition Clearance and Effects in the Lung 2002 , 15(2), 213–220.
Fromme, H.;Oddoy, A.;Piloty, M.;Krause, M.;Lahrz, T. Polycyclic aromatic hydrocarbons (PHA) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci. total environ. 1998, 217, 165-173.
Furuya, K.;Kudo, Y.;Okinagac, K.;Yamukib, M.;Takahashid,S.;Arakie,Y.;Hisamatsuf, Y. Seasonal variation and their characterization of suspended particulate matter in the air of subway stations. Journal of Trace and Microprobe Techniques 2001, 19(4), 469-485.
Gomez-Perales, J.E. Commuters’ exposure to air pollution in Mexico City. PhD, Imperial College London, Department of Environmental Science and Technology ,University of London 2005.
Gómez-Perales,J.E.;Colvile,R.N.;Fernández-Bremauntz,A.A.;Gutiérrez-Avedoy,V.;Páramo-Figueroa,V.H.;Blanco-Jiménez,S.;Bueno-López,E.;Bernabé-Cabanillas,R.;Mandujano,F.;Hidalgo-Navarro,M.;Nieuwenhuijsen,M.J. Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmos. environ. 2007, 41, 890-901.
Giugliano, M.;Lonati, G.;Butelli, P.;Romele, L.;Tardivo, R.;Grosso, M. Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure. Atmos. environ. 2005, 39, 2421-2431.
Hämeri, K.;Koponen, I.K.;Aalto, P.P.;Kulmala, M. The particle detection efficiency of the TSI-3007 condensation particle counter. J. aerosol sci. 2002, 33, 1463-1469.
Hitchins, J.;Morawska L.;Wolff R.;Gilbert D. Concentrations of submicrometer particles from vehicle emissions near a major road. Atmos. environ.2000, 34, 51-59.
Hinds, W. C. Aerosol technology: properties, behavior, and measurement of airborneparticles. New York: Wiley 1999, 2nd ed.
Horvath, H.;Kasahara, M.;Pesava, P. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J. aerosol sci. 1996, 27, 417-435.
Husseina, T.;Hämeri, K.;Aalto, P.P.;Paatero, P.;Kulmala, M. Modal structureand spatial–temporal variations of urban and suburban aerosols in Helsinki-Finland. Atmos. environ. 2005, 39, 1655–1668.
Huang, H.L.;Hsu, D.J. Exposure levels of particulate matter in long-distance buses in Taiwan. Indoor air. 2009, 19, 234-242.
Johansson, C.;Johansson, P.A. Particulate matter in the underground of Stockholm. Atmos. environ. 2003, 37(1), 3-9.
Jayaratne, E.R.;Wang, L.;Heuff, D.;Morawska, L.;Ferreira, L. Increase inparticle number emissions from motor vehicles due to interruption of steady traffic flow. Transp. res. Part D-TransportEnvironment. 2009, 14, 521-526.
Karlsson, H.L.;Nilsson, L.;Möller, L. Subway particles are moregenotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem. res. toxicol. 2005, 18, 19-23.
Kim, K.Y.;Kim, Y.S.;Roh, Y.M.;Lee, C.M.;Kim, C.N. Spatialdistributionof particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. J. hazard. mater. 2008, 154, 440-443.
Kam, W.;Cheung, K.;Daher, N.;Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. environ. 2011, 45, 1506-1516.
Kreyling, W.G.;Semmler, M.;Erbe, F.;Mayer, P.;Takenaka, S.;Schulz, H.; Oberdörster, G.;Ziesenis, A. Translocation of ultrafine insoluble iridium particlesfrom lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health-Part A 2002, 65, 1513-1530.
Kreyling, W.G.;Semmler, M.;Möller, W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004, 17(2), 140-152.
Kreyling, W.G.;Semmler, M.;Möller, W. Health Implications of Nanoparticles. Journal of Nanoparticle Research 2006, 8, 543–562.
Knibbs, L.D.;de Dear, R.J.;Morawska, L. Effect of cabin ventilation rate on ultrafine particle exposure inside automobiles. Environ. sci. technol. 2010, 44, 3546-3551.
Li, T.T.;Bai, Y.H.;Liu, Z.R.;Li, J.L. In-train air quality assessment of therailway transit system in Beijing: a note. Transp. res. Part D-Transport Environment. 2007, 12, 64-67.
Lighty, J.S.;Veranth, J.M.;Sarofim, A.F. Combustion aerosols: factors governing their size andcomposition andimplications tohumanhealth. J Air Waste Manag Assoc. 2000, 50 (9), 1565–1618.
Levy, J.I.;Dumyahn, T.;Spengler, J.D. Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J. expo. anal. environ. epidemiol. 2002, 12, 104–114.
Laumbach, R.J.;Rich, D.Q.;Gandhi, S.;Amorosa, L.;Schneider, S.;Zhang, J.;Ohman-Strickland, P.;Gong, J.;Lelyanov, O.;Kipen, H.M. Acute changes in heart rate variability in subjects with diabetes following a highway traffic exposure. J. occup. environ. med. 2010, 52, 324-331.
Morawska, L.;Thomas, S.;Jamriska, M.;Johnson, G. The modality of particle size distributions of environmental aerosols. Atmos. environ. 1999, 33, 4401-4411.
Murruni, L.G.;Solanes, V.;Debray, M.;Kreiner, A.J.;Davidson, J.;Davidson, M.;Vázquez, M.;Ozafrán, M. Concentrations and elemental composition ofparticulate matter in the Buenos Aires underground system. Atmos. environ. 2009, 43 (30), 4577-4583.
Ning, Li.;Meiying, Wang.;Lori A. Bramble.;Debra A. Schmitz.;James J. Schauer.;Constantinos, Sioutas.;Jack R. Harkema.;Andre E. NelThe. Adjuvant effect of ambient particulate matter is Closely Reflected by the particulate Oxidant potential. Environ. health perspect. 2009, 117 (7), 1116-1123.
Nieuwenhuijsen, M.J.;Gómez-Perales, J.E.;Colvile, R.N. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. environ. 2007, 41, 7995-8006.
Nemmar, A.;Hoet, PH.;Vanquickenborne, B.;Dinsdale, D.;Thomeer, M.;Hoylaerts,MF.;Vanbilloen, H.;Mortelmans, L.;Nemery, B. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002, 105, 411-414.
Oberdörster, G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001, 74, 1-8.
Oberdörster, G. An emerging discipline, Proceeding of international symposium on environment nanotechnology. Nanotoxicology 2004, 71-91.
Oberdörster, G.;Sharp, Z.;Atudorei, V.;Elder, A.;Gelein, R.;Kreyling,W.;Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. toxicol. 2004, 16, 437-445.
Oberdörster, G.;Oberdörster, E.;Oberdörster, J. Nanotoxicology: an emergingdiscipline evolving from studies of ultrafine particles. Environ. health perspect. 2005, 113(7), 823–839.
Peters, A.;Wichmann, H.E.;Tuch, T.;Heinrich, J.;Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. j. respir. crit. care med. 1997, 155 (4), 1376–1383.
Pakkanen, T.;Loukkola, K.;Korhonen, C.;Aurela, M.; Mäkelä , T.;Hillamo, R.;Aarnio, P.;Koskentalo, T.;Kousa, A.;Maenhaut, W. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmos. environ. 2001, 35, 5381–5391.
Pope III, C.A.;Burnett, R.T.;Thurston, G.D.;Thun, M.J.;Calle, E.E.;Krewski, D.;Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004, 109, 71-77.
Pope, C.A.;Dockery, D.W. Health effects of fine particulate air pollution: lines that connect. J. Air & Waste Manage. Assoc. 2006, 56 (6), 709-742.
Pfeifer, G.D.;Harrison, R.M.;Lynam, D.R. Personal exposure to airborne metals in London taxi drivers and office workers in 1995 and 1996. Sci Total Environ. 1999, 235, 253-260.
Park, D.U.;Jin, K.W.;Yoo, K.N. Analysis on non-malignant respiratory and drowsiness rate symptom for passengers using subway in Seoul. Korean J Environ Health. 2006, 32(5), 412–417.
Park, D.U.;Ha, K.C. Characteristics of PM10, PM2.5, CO2 and CO monitoredin interiors and platforms of subway train in Seoul, Korea. Environ. int. 2008, 34, 629-634.
Praml G, Schirl R. Dust exposure in Munich public transportation:a comprehensive 4-year survey in buses and trams. Int Arch OccupEnviron Health. 2000, 73, 209–214.
Ripanucci, G.;Grana, M.;Vicentini, L.;Magrini, A.;Bergamaschi, A. Dust in the underground railway tunnels of an Italian town. Journal of Occupational and Environmental Hygiene 2006, 3, 16-25.
Raut, J.C.;Chazette, P.;Fortain, A. Link between aerosol optical,microphysical and chemical measurements in an underground railway station in Paris. Atmos. environ. 2009, 43, 860-868.
Richmond-Bryant, J.;Saganich, C.;Bukiewicz, L.;Kalin, R. Associations of PM2.5 and black carbon concentrations with traffic, idling,background pollution,and meteorology during school dismissals. Sci. total environ. 2009, 407, 3357-3364.
Ruckerl, R.;Phipps, R.P.;Schneider, A.;Frampton, M.;Cyrys, J.;Oberdorster, G.;Wichmann, H.E.;Peters, A. Ultrafine particles and platelet activation in patients with coronary heart disease—results from a prospective panel study. Part Fibre Toxicol. 2007, 4, 1.
Reponen, T.;Grinshpun, S.A.;Trakumas, S.;Martuzevicius, D.;Wang, Z.M.;LeMasters, G.,Lockey, J.E.;Biswas, P. Concentration gradient patterns of aerosol particles near interstate higheays in the Greater Cincinnati airshed. Journal of Environmental Monitoring 2003, 5, 557-562.
Risom, L.;Møller, P.;Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005, 592, 119-137.
Sheet Metal and Air Conditioning Contractor' National Association (SMACNA). Indoor air quality: a systems approach 1998, 3rd edition—January.
Sitzmann, B.;Kendall, M.;Watt, J.;Williams, I. Characterisationof airborneparticles in London by computer-controlled scanning electron microscopy. Sci. total environ. 1999, 241, 63-73.
Schulz, H.;Harder, V.;Ibald-Mulli, A.;Khandoga, A.;Koenig, W.;Krombach, F.;Radykewicz, R.;Stampfl, A.;Thorand, B.;Peters, A. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med. 2005, 18 (1), 1–22.
Seaton, A.;Cherrie, J.;Dennekamp, M.;Donaldson, K.;Hurley, J.F.;Tran, C.L. The London underground: dust and hazards to health. Occupational and Environmental Medicine 2005, 62, 355-362.
Salma, I.;Weidinger, T.;Maenhaut, W. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. environ. 2007, 41, 8391-8405.
Salma, I.;Pósfai, M.;Kovács, K.;Kuzmann, E.;Homonnay, Z.;Posta, J. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmos. environ. 2009, 43, 3460-3466.
Shi, J.P.;Evans, D.E.;Khan, A.A.;Harrison, R.H. Sources and concentrationof nanoparticles (<10 nm diameter) in the urban atmosphere. Atmos. Environ.2001, 35, 1193-1202.
Sillanpää, M.;Saarikoski, S.;Hillamo, R.;Pennanen, A.;Makkonen, U.;Spolnik, Z.;Grieken, R. V.;Koskentalo, T.;Salonen, R. O. Chemical composition, mass size distribution and source analysisof long-range transported wildfire smokes in Helsinki. Sci. total environ. 2005, 350, 119-135.
TSI, http://www.tsi.com/en-1033/index.aspx. U.S.A. (上網日期:2012年2月4日)
Wang, L.;Jayaratne, R.;Heuff, D.;Morawska, L. Development of a composite line source emission model for traffic interrupted microenvironments and itsapplication in particle number emissions at a bus station. Atmos. environ. 2010, 44, 3269-3277.
Wang , X.;Gao, H.O. Exposure to fine particle mass and number concentrations in urban transportation environments of New York City. Transp. Res. Part D-Transport Environment. 2011, 16, 384-391.
Wallace, L.;Ott, W. Personal exposure to ultrafine particles. J Expo Sci Environ Epidemiol. 2011, 21, 20-30.
Yin, J.;Harrison, R.M. Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmos. environ. 2008, 42, 980-988.
Zuurbier, M.;Hoek, G.;Oldenwening, M.;Lenters, V.;Meliefste, K.;Van den Hazel,P.;Brunekreef, B. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ. health perspect. 2010, 118, 783-789.
Zhu, Y.;Hinds, W.C.;Kim, S.;Sioutas, C. Concentration and size distribution of ultrafine particles near a major highway. J. Air Waste Manage. Assoc. 2002, 52, 1032-1042.
Zhu, Y.; Hinds, W.C.;Kim, S.;Shen, S.;Sioutas,C. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. environ. 2002, 36(27), 4323-4335.
行政院環境保護署(2010),中華民國空氣品質監測報告2010年報,行政院環境保護署。網址:http://www.epa.gov.tw/(上網日期:2011年12月4日)。
李崇德(1995),「台灣北部都會區氣懸微粒粒徑分佈之污染物特性分析」,行政院環保署。
李逸聖(2009),「高速公路收費站大氣環境PM2.5濃度測量」,明志科技大學生化工程研究所碩士論文。新北市,臺灣。
吳岳侖(2005),「微氣候對台北盆地能見度之影響研究」,中山大學環境工程研究所,碩士論文。高雄市,臺灣。
林義倫(2008),「台北地區大眾捷運系統PM10、PM2.5濃度測量」,明志科技大學生化工程研究所,碩士論文。臺北市,臺灣。。
周文賢 (1997),統計學,第1版,智勝文化事業有限公司。臺北市,臺灣。
許文昌(1992),「台北都會區氣懸微粒之化學特性」,國立中央大學環境工程研究所,碩士論文。桃園縣,臺灣。
陳順宇、鄭碧娥 (2004),基礎統計學,華泰書局。臺北市,臺灣。
曾元廷(2005),「台北捷運站、火車站及公車站超細粒徑懸浮微粒濃度特性之研究」,國立台灣大學職業醫學與工業衛生研究所,碩士論文。臺北市,臺灣。
詹長權、蘇大成、莊凱任(2006),「微粒空氣污染物特性、毒性和健康風險之研究--總計畫暨子計畫一:微粒空氣污染物人體心血管毒性研究,研究成果報告」,環保署/國科會空污防制科研合作計畫。
臺北大眾捷運股份有限公司,網址:http://www.trtc.com.tw/。(上網日期:2012年2月4日),臺北市,臺灣。
臺北市公共運輸處大眾運輸科,網址:http://www.pto.taipei.gov.tw/。(上網日期:2012年3月8日),臺北市,臺灣。
臺北市政府環境保護局,網址:http://www.dep.taipei.gov.tw/。(上網日期:2012年5月6日),臺北市,臺灣。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊