跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐郁帆
研究生(外文):Yu-Fan Syu
論文名稱:以化成處理法在鎂合金壓鑄飛邊廢料表面形成氯離子位於中間層之層狀雙層氫氧化物及此材料吸收水中氟離子之研究
論文名稱(外文):Direct growth of Mg-Al-Cl LDH film on Mg alloy die casting flash scrap by chemical conversion treatment and the application of the material on absorbing fluoride ions in aqueous solution
指導教授:汪俊延
指導教授(外文):Jun-Yen Uan
口試委員:王建義林宏茂
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:45
中文關鍵詞:鎂合金壓鑄飛邊廢料中間層為氯離子的鎂鋁層狀雙層氫氧化物化成處理陰離子交換氯化鋁
外文關鍵詞:Mg alloy die casting flash scrapMg-Al-Cl LDHchemical conversion treatmentanion-exchangeabilityAlCl3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化成處理的方式,於AM60及AZ91鎂合金壓鑄飛邊廢料表面形成鎂鋁層狀雙層氫氧化物(Mg-Al-Cl LDH)皮膜。此鎂鋁層狀雙層氫氧化物中間層陰離子以氯離子為主。此鎂鋁層狀雙層氫氧化物具有陰離子交換的特性,可用來吸收含有過量氟離子之水溶液。實驗過程中以200毫升,濃度為3.5 wt.%之氯化鈉水溶液(使用鹽酸滴定至pH值為1.5)對鎂合金壓鑄飛邊廢料(AM60、AZ91)進行化成處理三十分鐘,可在其表面產生中間層為氯離子的鎂鋁層狀雙層氫氧化物皮膜。將處理後的試片取1.5克加入100毫升之氟離子水溶液進行氟離子吸收測試六十分鐘,可使溶液中的氟離子濃度明顯下降。實驗結果發現,以AZ91飛邊廢料經由化成處理所得試片吸收效果優於AM60。因AM60與AZ91基材鋁含量的差異導致吸收效果的落差,故藉由於化成處理溶液中添加氯化鋁對AM60壓鑄飛邊廢料進行化成處理,希望可以改善吸收水溶液中氟離子的效果。結果顯示,AM60吸收水溶液中氟離子的效果明顯提升,甚至優於AZ91吸收水溶液中氟離子的效果。此外,在實驗過程中發現加入氯化鋁於溶液中對AM60飛邊廢料進行化成處理時,溶液pH值上升緩慢。因此,必須將化成處理時間增加至兩小時。本研究著重於使無法經濟且有效回收的鎂合金壓鑄飛邊廢料能夠有新的用途。經過此化成處理後的飛邊廢料可以用來吸收含有過量氟離子之水溶液,例如半導體廠所排放之含有高濃度氟離子的廢水。讓傳統工業所產生的廢料,也能夠應用於高科技業。

This work presents a novel method to develop Mg-Al-Cl layered double hydroxide (Mg-Al-Cl LDH) on Mg alloy die casting flash scrap by simply dipping the sample in chemical conversion solution (an aqueous HCl of initial pH 1.5 with 3.5 wt.% NaCl solution) for 30 min at room temperature. The Mg-Al-Cl LDH has anion-exchangeability and can be used to absorb fluoride ions in aqueous solution. By this method, we can directly produce the Cl-intercalated LDH on Mg alloy die casting flash and do not need deintercalation of carbonate ions from CO3-intercalated LDH. Experimentally, the chemical reaction should be sufficiently strong to raise the pH value of the system to ~9 as soon as possible for favoring the LDH formation. The chemical conversion treatment time usually is 30 min. Because of the Al concentration difference between AM60 and AZ91, we try to add different amount of AlCl3 in chemical conversion solution. However, adding 0.22 g AlCl3 in chemical conversion solution cause the pH value to rise slowly. Thus, increasing treatment time to 120 min is necessary as treating AM60 flash scrap in chemical conversion solution containing AlCl3. Using post-treatment samples to absorb fluoride ions for 60 min, the concentration of fluoride ions from 100 ppm fluoride ions aqueous solution (pH 6.0 ± 0.5) is decreased significantly. According to the experimental results, the different effect of absorbing fluoride ions caused by different alloys’ composition (AM60 and AZ91) can improve by adding aluminum ions in the chemical conversion solution. Moreover, increasing treatment time can make good growth of LDH and can also improve the effect of absorbing fluoride ions. The Mg alloy die casting flash scrap after chemical conversion treatment can be used to absorb fluoride ions in aqueous solution such as high concentration of fluoride wastewater generated by the semiconductor manufacturing process, making Mg alloy die casting flash scrap develop a new usage.

中文摘要 i

ABSTRACT ii

CONTENTS iv

LIST OF FIGURES v

CHAPTER 1 Introduction 1

CHAPTER 2 Experimental 5
2.1 Materials and the solutions for conversion coating 5
2.2 Mg-Al-Cl LDH film on flash scraps’ surface 5
2.3 Removal of fluoride ions 7

CHAPTER 3 Results and Discussion 8
3.1 Production of Mg-Al-Cl LDH on Mg alloy surface 8
3.2 Addition of aluminum ions in NaCl_pH 1.5 solution 10
3.3 Removal of fluoride ions 17

CHAPTER 4 Conclusions 22

REFERENCES 43

[1] B.L. Mordike, T. Ebert, Materials Science and Engineering A, 302 (2001) 37-45.
[2] A. Munitz, C. Cotler, A. Stern, G. Kohn, Materials Science and Engineering A, 302 (2001) 68-73.
[3] M. Gándara, Materiali in tehnologije, 6 (2011) 633-637.
[4] F. Wu, S. Zhang, Z. Tao, Materials and Corrosion, 62 (2011) 234-239.
[5] H.E. Friedrich, B.L. Mordike, Magnesium Technology - Metallurgy, Design Data, Applications, Springer-Verlag, 2006, pp. 234-253.
[6] I.J. Polmear, Light alloys: from traditional alloys to nanocrystals, Butterworth-Heinemann, 2006, p. 254.
[7] R.L. Edgar, Magnesium Alloys and their Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 1-8.
[8] S. Goto, Introduction to Magnesium Investing, Magnesium Investing News, 2011.
[9] J. Milroy, S. Hinduja, K. Davey, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212 (1998) 197-215.
[10] H. Antrekowitsch, G. Hanko, P. Ebner, Magnesium technology, (2002) 43-48.
[11] F. Cavani, F. Trifiro, A. Vaccari, Catalysis Today, (1991) 173-301.
[12] A.I. Khan, D. O''Hare, Journal of Materials Chemistry, 12 (2002) 3191-3198.
[13] S. Miyata, Clays and Clay Minerals, 31 (1983) 305-311.
[14] U. Olsbye, D. Akporiaye, E. Rytter, M. Rønnekleiv, E. Tangstad, Applied Catalysis A: General, 224 (2002) 39-49.
[15] H.C. Greenwell, P.J. Holliman, W. Jones, B.V. Velasco, Catalysis Today, 114 (2006) 397-402.
[16] U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, European Journal of Inorganic Chemistry, (1998) 1439-1446.
[17] K. Okamoto, N. Iyi, T. Sasaki, Applied Clay Science, 37 (2007) 23-31.
[18] B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, Journal of the American Chemical Society, 124 (2002) 14127-14136.
[19] K.Y. Park, J.H. Song, S.H. Lee, H.S. Kim, Environmental Engineering Science, 27 (2010) 805-810.
[20] M. Trikeriotis, D.F. Ghanotakis, International Journal of Pharmaceutics, 332 (2007) 176-184.
[21] B.M. Choudary, B. Bharathi, C.V. Reddy, M.L. Kantam, K.V. Raghavan, Chemical Communications, (2001) 1736-1737.
[22] B.M. Choudary, T. Someshwar, M. Lakshmi Kantam, C. Venkat Reddy, Catalysis Communications, 5 (2004) 215-219.
[23] S. Miyata, Clays and Clay Minerals, 23 (1975) 369-375.
[24] N. Iyi, T. Matsumoto, Y. Kaneko, K. Kitamura, Chemistry of Materials, 16 (2004) 2926-2932.
[25] G. Centi, S. Perathoner, Catalysis Today, 79-80 (2003) 3-13.
[26] Z. Lü, F. Zhang, X. Lei, L. Yang, S. Xu, X. Duan, Chemical Engineering Science, 63 (2008) 4055-4062.
[27] X. Guo, F. Zhang, S. Xu, Z. Cui, D.G. Evans, X. Duan, Industrial & Engineering Chemistry Research, 48 (2009) 10864-10869.
[28] J.K. Lin, C.L. Hsia, J.Y. Uan, Scripta Materialia, 56 (2007) 927-930.
[29] X. Guo, F. Zhang, S. Xu, D.G. Evans, X. Duan, Chemical Communications, (2009) 6836-6838.
[30] Z.L. Hsieh, M.C. Lin, J.Y. Uan, Journal of Materials Chemistry, 21 (2011) 1880-1889.
[31] J.Y. Uan, J.K. Lin, Y.S. Tung, Journal of Materials Chemistry, 20 (2010) 761-766.
[32] A. Toyoda, T. Taira, IEEE Transactions on Semiconductor Manufacturing, 13 (2000) 305-309.
[33] F. Shen, X. Chen, P. Gao, G. Chen, Chemical Engineering Science, 58 (2003) 987-993.
[34] M. Islam, R.K. Patel, Journal of Hazardous Materials, 143 (2007) 303-310.
[35] Guidelines for drinking water quality, World Health Organization, 3rd ed., 2004.
[36] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, Tex., 1974, pp. 139-145.
[37] J.K. Lin, K.L. Jeng, J.Y. Uan, Corrosion Science, 53 (2011) 3832-3839.
[38] J. Chen, Y. Song, D. Shan, E.-H. Han, Corrosion Science, 53 (2011) 3281-3288.
[39] M. del Arco, S. Gutierrez, C. Martin, V. Rives, Physical Chemistry Chemical Physics, 3 (2001) 119-126.
[40] P. Zhang, G. Qian, H. Shi, X. Ruan, J. Yang, R.L. Frost, Journal of Colloid and Interface Science, 365 (2012) 110-116.
[41] W. Chen, B. Qu, Chemistry of Materials, 15 (2003) 3208-3213.
[42] E. Álvarez-Ayuso, H.W. Nugteren, Water Research, 39 (2005) 2535-2542.
[43] F.R. Costa, A. Leuteritz, U. Wagenknecht, D. Jehnichen, L. Häußler, G. Heinrich, Applied Clay Science, 38 (2008) 153-164.
[44] F. Millange, R.I. Walton, D. O''Hare, Journal of Materials Chemistry, 10 (2000) 1713-1720.
[45] E. Lydersen, B. Salbu, A.B.S. Polèo, I.P. Muniz, Water Resources Research, 27 (1991) 351-357.
[46] S. Ram, T.B. Singh, L.C. Pathak, Physica Status Solidi (a), 165 (1998) 151-164.
[47] S. Ram, S. Rana, Materials Letters, 42 (2000) 52-60.
[48] W. Tongamp, Q. Zhang, F. Saito, Journal of Materials Science, 42 (2007) 9210-9215.
[49] N. Viswanathan, S. Meenakshi, Applied Clay Science, 48 (2010) 607-611.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 成長鋰鋁層狀氫氧化合物(Li-Al-CO3 LDH)透明薄膜於AZ31基材以及在稀薄氯化鈉濃度環境下該LDH薄膜提升抗腐蝕性質之研究
2. 二氧化碳資源化再利用於鎂及鎂合金化成處理與表面改質以提升其抗蝕性與生物相容性之研究
3. Li-Al-CO3層狀雙氫氧化物(LDH)之螢光特性研究及其插層CO32-陰離子對螢光強度之影響
4. 在大氣環境下以負極電沉積法成長鋰鋁層狀氫氧化合物(Li-Al-CO3 LDH)薄膜於1050鋁基材之研究
5. 使用AlLi介金屬化合物製備離子水溶液合成Li/Al雙氫氧化合物(LDH)薄膜於玻璃基材/氮化銦鎵發光二極體/多孔性不銹鋼管及該LDH薄膜性質分析之研究
6. 利用乙醇催化反應產生碳膜於Li-Al-CO3 LDH 之場發射特性研究
7. 純鎂製骨釘/骨板於模擬體液之間隙腐蝕及其生成物對骨釘與骨板間抗拉強度影響之研究
8. Mg-Fe-LDH 與SiO2添加於含CaCO3/Ca3(SiO4)O之隔熱防蝕塗層並將其噴塗於鎂合金AZ91D表面上之特性研究
9. AZ91D鎂合金表面化成Mg,Al-hydrotalcite保護層及其抗腐蝕特性研究
10. SUS-316L不銹鋼金屬表面直接成長Mg-Fe layered double hydroxide (LDH)保護層及其於0.85M H2SO4水溶液抗腐蝕特性研究
11. 以化成處理法在AZ91D鎂合金球表面形成層狀雙層氫氧化物之核心-殼層(core-shell)結構及此core-shell材料移除水中氟離子及硫酸根離子之研究
12. 鋰鋁層狀雙氫氧化物表面成長鎳顆粒做為觸媒管及其應用
13. 鎂合金廢料轉製為鎂–鋁類水滑石之製備以及將鎂–鐵–氯類水滑石做為新磷結合劑之開發
14. Li-Al-CO3層狀雙氫氧化物(LDH)經500℃鍛燒之粉末做為乙醇脫氫觸媒之研究
15. 鎂合金表面成長碳酸鈣/水滑石複合膜提升抗腐蝕研究及其聚焦離子束定點切割觀察