跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江仁吉
研究生(外文):Jen-Chi Chiang
論文名稱:奈米碳管/氮化硼/石墨烯/聚亞醯胺奈米複合薄膜之研究
論文名稱(外文):Study on the Preparation of Multi-Walled Carbon Nanotubes/Boron Nitride/Graphene/Polyimide Nanocomposite Films
指導教授:蔡美慧蔡美慧引用關係
指導教授(外文):Mei-Hui Tsai
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:213
中文關鍵詞:奈米碳管氮化硼石墨烯聚亞醯胺
外文關鍵詞:Carbon NanotubesBoron NitrideGraphenePolyimide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:533
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討多壁奈米碳管(CNT)及官能基化奈米碳管(m-CNT,g-CNT)與氮化硼(Boron Nitride,BN)、官能基化氮化硼(Ti-BN)、石墨烯(Graphene,TrG)和官能基化石墨烯(g-TrG)於聚亞醯胺(Polyimide,PI)複合薄膜之製備及導熱性質研究。
第一部分:聚亞醯胺/奈米碳管複合薄膜之製備與研究
本研究成功利用自由基聚合法(free radical polymerization) 將methacrylamide (MAM)與glycidyl methacrylate (GMA)以共價鍵結接枝奈米碳管表面,製得官能基化奈米碳管,探討其聚亞醯胺形成複合薄膜之熱傳導性質及相關特性研究。實驗結果得知Raman分析純奈米碳管D/G band積分面積比為1.08。分別接枝上MAM與GMA的奈米碳管D/G band積分面積比為1.10與1.15,表示其除了可以有效改質奈米碳管,更可以保持奈米碳管之結構完整性。由SEM型態研究發現官能基化奈米碳管比未改質奈米碳管具有較佳的分散性。官能基化奈米碳管(g-CNT))/聚亞醯胺複合薄膜呈現最優異熱傳導係數(thermal conductivity,k),從0.13W/m•K (純聚亞醯胺)增加至0.44W/m•K (2wt% g-CNT),提升238 %。
第二部分:聚亞醯胺/氮化硼複合薄膜之製備與研究
本研究選用傳統的高耐熱性聚亞醯胺單體組合,分析添加不同粒徑組合未改質的氮化硼於聚亞醯胺所製成之複合薄膜的機械與熱性質變化,並進一步比較添加鈦偶合劑(2-((2-aminoethyl)amino)ethoxy)(isopropoxy)titanium)改質的氮化硼(Ti-BN)影響。研究結果顯示添加50wt%兩種不同BN粒徑(4m與15m)的聚亞醯胺複合膜,將可同時達到極低的熱膨脹係數(coefficient of thermal expansion, CTE, 14 ppm/oC)及極高的k值0.75 W/m•K,而此複合膜中所含的BN粒子組合若再經過改質後,則可得更低的CTE 12 ppm/oC及更高的k值0.86 W/m•K,顯示此PI與改質BN間的作用力增加而複合膜具有極佳的尺寸安定性與熱傳導能力,同時此複合膜又具有足夠的機械強度與耐熱性。
第三部分:聚亞醯胺/石墨烯複合薄膜之製備與研究
本研究以化學還原法製備石墨烯(Graphene) ,需透過天然石墨(Graphite)氧化的過程,以降低石墨層間的凡得瓦爾力,製備氧化石墨烯(Graphene Oxide, GO),經熱還原處理製備石墨烯,探討石墨烯之製備及鑑定,並進一步官能基化接枝上GMA氧化石墨烯與石墨烯的表面,可促使石墨烯與聚亞醯胺薄膜之間相容性,使石墨烯更均勻分散於聚亞醯胺,研究結果顯示,在添加量同為10wt%時,氧化石墨烯(GO)k值為0.3W/m•K,而官能基化氧化石墨烯(g-GO)k值提升523 %(0.81W/m•K)。而還原後的石墨烯,添加量同為2wt%時,石墨烯(TrG)k值為0.35W/m•K,官能基化石墨烯(g-TrG)k值提升300%(0.52W/m•K);較添加相同含量之改質奈米碳管(g-TrG)約高出25%。顯示改質石墨烯增加PI之間熱傳導網絡更為緊密,增加熱傳導降低介面熱組。
第四部分:聚亞醯胺/奈米碳管/氮化硼/石墨烯混成薄膜
本研究第四部分在於探討混成式填充物(hybrid filler)配方於聚亞醯胺混成薄膜中之最適熱傳導係數。混成式填充物主要填充物為氮化硼(片狀),以高長徑比及高熱傳性之一維結構奈米碳管(管狀)與比表面基大及高熱傳性之二維結構石墨烯(片狀)為輔,在低添加含量情況下產生有效熱傳導網路結構。而一維奈米碳管與二維石墨烯在系統中與氮化硼(4m與15m)填充物間之協成效應。研究結果顯示氮化硼表面經鈦系偶合劑修飾於聚亞醯胺複合薄膜中具有較佳的分散性。添加10wt%官能基化氮化硼與1wt%官能基化奈米碳管其熱傳導係數約1.26W/m•K,其熱傳導係數大於添加50wt%改質氮化硼/聚亞醯胺系統0.86W/m•K,此複合式配方可取代單一氮化硼配方;當添加10wt%官能基化氮化硼與1wt%官能基化石墨烯其熱傳導係數約1.41W/m•K,其熱傳導係數大於官能基化奈米碳管/官能基化氮化硼/聚亞醯胺薄膜系統高出12%,最高k值可達2.11W/m•K,可降低複合薄膜成本並提升PI的加工性。

This paper aims to explore the multi-walled carbon nanotubes (CNT) and the functional groups of carbon nanotubes (m-CNT,g-CNT) and boron nitride (BN), graphene (TrG) and surface modification of graphene Preparation and thermal properties of the polyimide (Polyimide, PI) composite films.
Part I: Preparation of polyimide /carbon nanotube composite thin films and ResearchIn this study, successful use of free radical polymerization (free in radical polymerization) methacrylamide MAM and glycidyl methacrylate GMA covalent bonding grafted CNT surface, the system of functional groups of carbon nanotubes to explore its Poly amide formation of the thermal conductivity of the composite thin film properties and related characteristics of Experimental results show that the Raman analytical grade carbon nanotubes D / G band integral area ratio of 1.08. Respectively, grafted onto the carbon nanotubes of the MAM and the GMA D / G band integral area ratio of 1.10 and 1.15, indicating that its addition can be effectively modified carbon nanotubes, but also to maintain the structural integrity of the carbon nanotubes. SEM patterns, the study found that the functional groups of carbon nanotubes have better dispersion than the unmodified carbon nanotubes. Functional groups of carbon nanotubes (g-CNT)) / polyimide composite films show the most outstanding thermal conductivity (the thermal conductivity, k) 0.13W/mK (pure polyimide) increased to 0.44W/mK (2wt%g-CNT), 238% increase.
Part II: Preparation of polyimide / boron nitride composite films and ResearchIn this study the traditional, high heat resistant polyimide monomer combination of changes in the mechanical and thermal properties of boron nitride in a polyimide composite films made of the analysis to add different size combinations of unmodified, and further compare Add a titanium coupling agent (2 - ((2-aminoethyl) amino) ethoxy) (isopropoxy) titanium) modification of boron nitride (Ti-BN) influence. The results show that adding 50wt% in two different BN particle size (4m and 15m) polyimide composite membranes, will be able to achieve a very low coefficient of thermal expansion (coefficient of the thermal expansion, the CTE, 14 ppm/oC ) and the high value of k 0.75W/mK, BN particle combinations if more contained in the composite membrane after modification, may be even lower CTE (12 ppm / oC) and higher values of k ( 0.86 W / mK), the increase in force between the PI and modified BN composite film has excellent dimensional stability and thermal conductivity, the composite membrane with sufficient mechanical strength and heat resistance.
Part III: Preparation and study of the polyimide / graphene composite filmsChemical to restore the rule of law prepared by graphite-ene (Graphene) required by the oxidation of natural graphite (Graphite), in order to reduce between graphite layers where have Waal forces, preparation of oxidation of graphite ene (Graphene Oxide, GO), by heat restore Prepared graphene to explore the preparation and identification of graphene, and functional groups of grafted GMA graphene oxide and graphene surface, can contribute to the compatibility between Graphene and polyimide film, the more uniform graphene dispersed in the polyimide, the results show that in addition with 10wt% graphite oxide-ene (GO) k value 0.3W/mK functionalization of graphene oxide (g-GO) k enhance the value of 523 % (0.81W/mK). But restored graphene add the amount of 2wt%, graphene (TrG) k is the the 0.35W/mK functionalization of graphene (g-TrG) and k enhance the value of 300% (0.52W/mK); compared to add the same content of the modified carbon nanotubes (g-TrG) and about 25% higher. Show modified graphene increase the PI thermal conductivity between the network closer to increase the thermal conductivity to reduce the interface thermal group.
Part IV: polyimide / carbon nanotube / boron nitride / graphene hybrid filmsThe fourth part of this study is to explore the blended filler formula (hybrid filler) in the optimal thermal conductivity in polyimide hybrid films. Blended filler filler boron nitride (sheet), high aspect ratio and high fever - borne one-dimensional structure of carbon nanotubes (tubular) and large surface area of the base and high heat transfer nature two-dimensional structure of graphite ene (flake), supplemented by the effective thermal conductivity of the network structure in the case of low add content. One-dimensional carbon nanotubes and two-dimensional graphene and boron nitride (4 m and 15m) between the filler Association into effect in the system. The results showed that the boron nitride surface with a better dispersion of the titanium coupling agent modified polyimide composite film. To Add 10wt% of functional groups of boron nitride with 1wt% of functional groups of carbon nanotube thermal conductivity of about 1.26W/mK, its thermal conductivity is greater than the addition of 50wt% modification of boron nitride / polyimide amine system (0.86W / mK), the composite formula can replace a single BN formula; about 1.41W/mK add 10wt% functionalization of boron nitride with 1wt% functionalization of graphene thermal conductivity, thermal conductivity greater than the functional groups of carbon nanotube / functional boron nitride / polyimide thin-film systems above 12 percent, the highest values of k up to 2.11W/mK composite film can reduce costs and enhance the workability of the PI.

摘 要 III
Abstract VII
謝誌 XII
目錄 XIV
表目錄 XXI
圖目錄 XXIV
第一章 緒論 1
1-1前言 1
1-2研究目的與研究方向 4
第二章 基礎理論與文獻回顧 8
2-1熱傳導機構簡介 8
2-2聚亞醯胺的發展與相關介紹 10
2-2-1縮合型聚亞醯胺樹脂 12
2-2-2加成型聚亞醯胺樹脂 14
2-2-3改質型聚亞醯胺樹脂 14
2-3奈米碳管的特性 16
2-3-1奈米碳管的結構 18
2-3-2奈米碳管的製備方法 21
2-3-3奈米碳管的分散方法 25
2-3-4奈米碳管/高分子複料的文獻回顧 45
2-4氮化硼的材料 51
2-4-1氮化硼的結構 54
2-4-2氮化硼的製備方法 55
2-4-3氮化硼/高分子的文獻回顧 56
2-5石墨烯的特性 63
2-5-1石墨烯的結構 64
2-5-2石墨烯的製備方法 65
2-5-3石墨烯/高分子的文獻回顧 72
第三章 實驗方法 78
3-1實驗藥品 78
3-2實驗儀器設備 82
3-3實驗流程圖 85
3-4實驗步驟 85
3-4-1聚亞醯胺(Polyimide)的製備 85
3-4-2奈米碳管/聚亞醯胺奈米複合薄膜的製備 86
3-4-2-1自由基聚合法(Free Radical Polymerization)改質奈米碳管 87
3-4-3氮化硼/聚亞醯胺奈米複合薄膜的製備 89
3-4-3-1溶膠凝膠法(sol-gel)修飾氮化硼 91
3-4-4石墨烯/聚亞醯胺奈米複合薄膜的製備 92
3-4-4-1化學氧化還原法(Chemical oxidation-reduction)製備石墨烯 92
3-4-4-2自由基聚合法(Free Radical Polymerization)改質石墨烯 93
3-4-4-3氧化石墨烯/聚亞醯胺奈米複合薄膜的製備 94
3-4-5奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的製備 95
3-4-6石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的製備 96
第四章 結果與討論 97
4-1奈米碳管/聚亞醯胺奈米複合薄膜的性質鑑定 97
4-1-1改質奈米碳管的熱重分析儀(TGA)鑑定 97
4-1-1改質奈米碳管的拉曼光譜(Raman)鑑定 99
4-1-2改質奈米碳管的化學分析電子能譜(ESCA)鑑定 100
4-1-3改質奈米碳管的穿透式電子顯微鏡(TEM)鑑定 105
4-1-4奈米碳管/聚亞醯胺奈米複合薄膜的儲存模數 107
4-1-5奈米碳管/聚亞醯胺奈米複合薄膜的玻璃轉移溫度 111
4-1-6奈米碳管/聚亞醯胺奈米複合薄膜的熱穩定性 114
4-1-7奈米碳管/聚亞醯胺奈米複合薄膜的尺寸安定性 117
4-1-8奈米碳管/聚亞醯胺奈米複合薄膜的熱傳導性質 121
4-1-9奈米碳管/聚亞醯胺奈米複合薄膜的掃描式電子顯微鏡(SEM) 125
4-2氮化硼/聚亞醯胺奈米複合薄膜的性質鑑定 127
4-2-1修飾氮化硼的傅立葉轉換紅外線光譜(FT-IR)鑑定 127
4-2-1氮化硼的的掃描式電子顯微鏡(SEM)鑑定 129
4-2-2氮化硼/聚亞醯胺奈米複合薄膜的儲存模數 129
4-2-3氮化硼/聚亞醯胺奈米複合薄膜的玻璃轉移溫度 132
4-2-4氮化硼/聚亞醯胺奈米複合薄膜的熱穩定性 134
4-2-5氮化硼/聚亞醯胺奈米複合薄膜的尺寸安定性 136
4-2-6氮化硼/聚亞醯胺奈米複合薄膜的熱傳導性質 138
4-2-7氮化硼/聚亞醯胺奈米複合薄膜的掃描式電子顯微鏡(SEM) 140
4-3石墨烯/聚亞醯胺奈米複合薄膜的性質鑑定 142
4-3-1石墨烯的X光繞射光譜儀(XRD)鑑定 142
4-3-2石墨烯的熱重分析儀(TGA)鑑定 143
4-3-3石墨烯的化學分析電子能譜(ESCA)鑑定 144
4-3-4石墨烯的穿透式電子顯微鏡(TEM)鑑定 151
4-3-5氧化石墨烯/聚亞醯胺奈米複合薄膜的儲存模數 153
4-3-6氧化石墨烯/聚亞醯胺奈米複合薄膜的玻璃轉移溫度 155
4-3-7 氧化石墨烯/聚亞醯胺奈米複合薄膜的熱穩定性 157
4-3-8氧化石墨烯/聚亞醯胺奈米複合薄膜的尺寸安定性 159
4-3-9氧化石墨烯/聚亞醯胺奈米複合薄膜的熱傳導性質 161
4-3-10氧化石墨烯/聚亞醯胺奈米複合薄膜的穿透式(TEM)/掃描式(SEM) 163
4-3-11石墨烯/聚亞醯胺奈米複合薄膜的儲存模數 164
4-3-12石墨烯/聚亞醯胺奈米複合薄膜的玻璃轉移溫度 166
4-3-13石墨烯/聚亞醯胺奈米複合薄膜的熱穩定性 168
4-3-14石墨烯/聚亞醯胺奈米複合薄膜的尺寸安定性 170
4-3-15石墨烯/聚亞醯胺奈米複合薄膜的熱傳導性質 172
4-3-16石墨烯/聚亞醯胺奈米複合薄膜的掃描式電子顯微鏡(SEM) 174
4-4奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的性質鑑定 176
4-4-1奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的儲存模數 176
4-4-2奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的玻璃轉移溫度 177
4-4-3奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的熱穩定性 179
4-4-4奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的尺寸安定性 180
4-4-5奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的熱傳導性質 182
4-4-6奈米碳管/氮化硼/聚亞醯胺奈米複合薄膜的掃描式電子顯微鏡(SEM) 185
4-5石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的性質鑑定 187
4-5-1石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的儲存模數 187
4-5-2石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的玻璃轉移溫度 188
4-5-3石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的熱穩定性 190
4-5-4石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的尺寸安定性 191
4-5-5石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的熱傳導性質 193
4-5-6石墨烯/氮化硼/聚亞醯胺奈米複合薄膜的掃描式電子顯微鏡(SEM) 196
第五章 總結論 198
第六章 參考文獻 205
[1]謝承佑,成功大學博士論文,七月,(2006)
[2]劉淑芬,埋入式電容材料技術之發展趨勢,(2003)
[3] LED散熱基板之厚膜與薄膜製程差異分析,www.ledinside.com.tw, (2009).
[4]淺談LED金屬封裝基板的應用優勢,www.ledinside.com.tw, (2009).
[5]陳凱琪、李巡天、許嘉紋、林志浩,工業材料雜誌,246期,(2007),162-165.
[6]高功率LED散熱技術與發展趨勢,www.digitimes.com.tw, (2010).
[7]材料世界網,2010/5/20.
[8] G.W. Lee, M.Park, J.Kim, J.I.Lee, H.G.Yoon, Composites: Part A, 37, (2006), 727–734.
[9]J.Wang, X.S.Yi, Composites Science and Technology 64,(2004),1623-1628.
[10] S. H. Xie, B.K. Zhu, J.B. Li, X.Z. Wei, Z.K. Xu, Polym. Testing, 23, (2004), 797–801.
[11] E.I. Du Pont de Nemours and Company, US patent # 20060124693A1, (2006).
[12] E.I. Du Pont de Nemours and Company, US patent # 20060124686A1, (2006).
[13] E.I. Du Pont de Nemours and Company, US patent # 20060293427A1,( 2006).
[14] Y.Xu, D.D.L.Chung, C.Mroz, Composites: Part A ,32 , (2001), 1749-1757.
[15] D.Yorifuji, S.Ando, Macromolecules, 43, (2010), 7583-7593.
[16]謝俊雄,工程塑膠,1983
[17] M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc., 30, 1140(1908)
[18] W. M., I. M. Robinsin, British Pat. 570858; U.S. Pat. 2710853(1955)
[19]M. K. Ghosh, K. L. Mittal,“Polyimide, Fundamentals and applications”1-6, marcel Dekker Inc. (1996)
[20]工業材料,(1991),175
[21]馬振基,塑膠資訊,第12 期, p14(民86).
[22]J.M. Abadie, A.L. Rusanov , L.G. Komarova , V.Y. Voytekunas Smithers Rapra Technology Limited,2007.
[23]D.Likhatch,C.G.Wing,I.Kardash,R.V.Graziano,J.Appl.polym.,59,(1996)725.
[24]蔡孟峰,“含氟可溶性聚醯胺-醯亞胺之合成及性質研究” ,國立成功大學 化學工程學系碩士班,2003。
[25]W.F.Gresham,M.A.Naylor US.Patent No.2,731,(1956),447.
[26]M.Grundschober,British Patent No.1, (1978),1190719.
[27] M. L. Bender, Y-L. Chow, F. Chloupek, J. Am. Chem. Soc. 80, (1958), 5380-5384
[28]J. A. Kreuz, J. Polym. Sci. Part A : Polym. Chem. 28, (1990), 3787
[29]A. V. Rami. Reddy and P. Sreenivasulu Reddy, J. Appl. Polym. Sci.,
58, (1995), p1935.
[30]Alexander A Kuznetsov, High Perform. Polym., 12, (2000), p445.
[31]K. Y. Choi and S. K. Choi, J. Polym. Sci.:Part A:20, (1982), p1107.
[32]M. Bruma, B.Schulz,T. Kopnick and J. Robinson, High Perform.
Polym., 12, (2000), p429.
[33]C. Jung, T. Aoyama, T. Wada, H. Sasabe, M. Jikei and M. Kakimoto,
High Perform. Polym., 12, (2000), p205(2000).
[34]M. Pasmanaban, M. Kakimoto and Y. Imai, J. Polym. Sci.:Part A.:28, (1990), p1569.
[35]Y. Yamada, High Perform. Polym., 10, (1998), p92.
[36]S. ijima, Helical microtubules of graphitic carbon Nature , (1991), 354.
[37] L. S. K. Pang, J. D. Saxby and S.P. Chatfield, J. Phys. Chem.,97, (1993) , 6941.
[38] L. Gao, X. Zhou and Y. Ding, Chemical Physics Letters, 434, (2007),
297.
[39] A. Moisala, Q. Li, I. A. Kinloch and A. H. Windle, CompositesScience and Technology, 66, (2006), 1285.
[40] C.W. Nan, G. Liu, Y. Lin and M. Li, Applied Physics Letters
, 85, (2004), 3549.
[41] R. Sivakumar, S. Guo, T. Nishimura and Y. Kagawa,
ScriptaMaterialia, 56, (2007), 265.
[42] R. S. Ruoff and D. C. Lorent, Phys. Rev., 33, (1995), 925.
[43] S. Berber, Y. K. kwon and D. Tomanek, Phys. Rev. Lett., 84, (2000),
, 4613.
[44] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Journal of Physical Chemistry B, 104, (2002), 2794.
[45]M. Paradise , T. Goswami, Materials and Design, 28, (2007), 1477–89.
[46] Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C.,San Diego, (1996).
[47]D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J.vazquez, R. Beyers, Nature,363, (1993), 605-609.
[48] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins and M. J. Heben, Chemical Physics Letters, 316, (2000), 13-18.
[49] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chemical Physics Letters, 299, (1999), 97-102.
[50] ”Carbon Nanotubes –preparation and properties”,ed. By Thomas W. Ebbesen, CRC Press, Boca Raton, New York, London, Tokyo,(1997).
[51] T. W. Ebbesen and P. M. Ajayan, Nature, 358, (1992), 220.
[52] S. lijima and T. Ichihashi, Nature, 363, (1993), 603.
[53] Y. Saito, M. Okuda, M. Tomita and T. Havashi, Chem. Phys.Lett., 236, (1995), 419.
[54] M. S Dresselhaus, G. Dresselhaus, Ph. Avouris, 80 Topics in Applied Physics, p32.
[55] Z. K. ZHU, Y. YANG, J, YIE and Z. N. OI, Journal of Applied
Polymer Science,73, (1999), 2977.
[56] C.Richard, F.Balavoine, P.Schultz, T.W.Ebbesen, C.Mioskowski ,, Science., 300, (2003), 775.
[57] Y.Kang, T. A.Taton, Am Chem Soc., 125, (2003), 5650-5651.
[58]R.J.Chen, Y.Zhang, D. Wang, H. Dai, J Am Chem Soc., 123, (2001), 3838.
[59] N.Nakashima, Y.Tomonari, H.Murakami., Jap Chem Lett., 6, (2002), 638.
[60] E.T. Thostenson, Z. Ren, T.W. Chou., Composites Science and Technology, 61, (2001), 1899–1912.
[61]J. Chen, M. A. Haman, H. Hu, Y. S. Chen, A. M. Cao, P. C. Eklund, R. C, Science, 2, (1998), 282.
[62]Z. Shi, Chemical Communications, 6, (2000), 461.
[63]M. Ree, K. Kim, S. H. Woo, H. Chang, Journal of Applied Physics.,81, (1997), 698.
[64]R. S. Whinnery, J. R., Cambridge, England, (1986).
[65] A. Hirsch, O. Vostrowsky, Top Curr Chem., 245, (2005), 193-237
[66]S. Qin, Macromolecules, 37, (2004), 9963-9967.
[67] H. L. Wu, journal of Polymer Science: Part A: Polymer Chemistry , 43, (2003), 6084-94
[68] M. Alvaro, J. Phys. Chem. B, 108, (2004), 12691-126
[69] V. Georgakilas, J. Am. Chiem. soc.,130, (2008), 8733-40.
[70] 中央大學化學實驗大綱,2008,www.science.phy.ncu.edu.tw/program_office/fileresult/%E5%8C%96A/%E5%8C%9620-%E8%83%A1%E6%99%AF%E7%80%9A-1.pdf
[71] 中國大百科慧藏,2008,www.libdlm.lib.ntu.edu.tw/cpedia/Content.asp?ID=45951
[72] J. B. Baek, L. S. Tan, Polymer, 44, (2003), 4135–47
[73] H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J., Chem. Mater., 17, (2005), 5057-64.
[74] K. Yang, M. Gu, Y. Guo, X. Pan, G. Mu,Carbon, 47,(2009), 1723-1737.
[75] C. Y. LI, W. Y. CHIU, T. M. DON, J. Polym. Sci., Part A: Polym. Chem, 45,(2007),3349-3358.
[76]J. Xu, P. Yao∗, X. Li, F. He,Materials Science and Engineering B,151,(2008), 210-219.
[77]J. Y. JEONG, H. J. LEE, S. W. KANG, L.-S. TAN, J. B. BAEK, J. Polym. Sci., Part A: Polym. Chem.46,( 2008),6041-6050.
[78]Y. JEON, S. W. KANG, L. S. TAN, J. B. BAEK, J. Polym. Sci., Part A: Polym. Chem.48,(2010),3103–3112.
[79] Y. JEON, L. S. TAN, J. B. BAEK,J. Polym. Sci., Part A: Polym. Chem. 48,( 2010), 1962- 1972.
[80] J. Y KANG, S. M. EO, I. Y. JEON, Y. S. CHOI, L. S. TAN, J. B. BAEK, J. Polym. Sci., Part A: Polym. Chem.(48), 2010, 1067-1078.
[81]Polymer Preprints 2010, 51(1), 583
[82]E. K. Choi, I. Y. Jeon, S. Y. Bae, H. J. Lee, H. S. Shin, L. Dai, J. B. Baek, Chem. Commun.46, (2010),6320–6322
[83]H. J. Lee, S. W. Han, Y. D. Kwon, L. S. Tan, J. B. Baek, C A R B ON 4 6 ,(2008),1850-1859.
[84] D. H. Wang, S. Sihn, A. K. Roy, J. B. Baek, L. S. Tan. European Polymer Journal ,(46),2010,1404–1416
[85]鄧至均,黃彥瑋,馬振基,化工資訊與商,75期,(2009),26-36
[86] Y. M. Ying, R. K. Saini, F. Liang, A. K. Sadana, W. E. Bulleps. Organic Letters, 5, (2003), 1471-1481.
[87] S.H. Liao, C.Y.Yen, C.H.Hung, C.C.Weng, M.C.Tsai, Y.F.Lin, C.C. M.Ma, P. Chin, A.Su., J. Mater. Chem.,18 ( 2008), 3993–4002.
[88] M.S.P.Shaffer, K.Koziol, Chem Commun (2002),2074.
[89] S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, M. S. Jhon. Macromol Rapid Comm, 24,(2003),1070-1079.
[90] G. H.Hwang, Y.T.Shieh, K.C.Hwang, Adv Funct Mater, (2004) 14: 487-495.
[91] L.M.Clayton, A.K.Sikder, A.Kumar, M.Cinke, M. Meyyappan, T.G.Gerasimov, J.P.Harmon. Adv Funct Mater ,15,(2005), 101-116.
[92] H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith,* L. Echegoyen, D. L. Carroll, S. H. Foulger, j. Ballato, Adv. Mater. 14,(2002),1480.
[93] M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martínez, J. M. Benoit, J. Schreiber, O. Chauvet, Chem. Commun.(2001),1450–1451
[94] T. M. Wu*, Y. W. Li, C. S. Liao, Carbon 43,(2005),734–740
[95] H. Zhang, H. X. Li, H. M. Cheng J. Phys. Chem. B ,110,(2006), 9095-9099.
[96] S.M Yuen , C.C M. Ma, C.L. Chiang , J.A. Chang,S.W. Huang, S.C. Chen, C.Y.Chuang,C.C. Yang , M.H. Wei ,Composites: Part A, 38,(2007), 2527–2535.
[97] S.M. Yuen, C.C. M. Ma , C.L.Chiang, Composites Science and Technology.68,(2008),2842–2848.
[98] B. Tonpheng, J. Yu, O. Andersson, Macromolecules, 42,(2009),9295–9301.
[99] W.Cui, F.Du, J.Zhao, W.Zhang, Y.Yang, X.Xie, Y.W. Mai, 49, Carbon, (2010), 495-500.
[100] M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo, E. Volz, Advanced Materials, 22, (2010),1654-1658.
[101] F. H. Gojny, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch,W. Bauhofer, A. H. Windle, K. Schulte, Polymer, 47,(2006), 2036–2045.
[102] S.Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J.Y. Wang, C.C. M. Ma , S. M. Li, Y. S. Wang, Carbon,49, (2011), 793-803
[103] M. K. Lei, T. C. Ma, V. A. Emel’kin., Chin. Phys. Lett., 13, (1996), 309-312.
[104] M.B. Saeed, M.S. Zhan, Inter. J. Adhesion &; Adhesives, 27, (2007), 319–329.
[105] W. Zhou, S. Qi, H. Li, S. Shao, Thermo. Acta, 452 , (2007), 36–42.
[106] W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Mater. Res. Bulletin , 42, (2007), 186 3–1873.
[107] K.C. Yung, B.L. Zhu, T.M.Yue, C.S.Xie, J. Appl.Polym.Sci., 116, (2010), 518-527.
[108] S. Kemaloglu, G. Ozkoc, A. Aytac, Thermochimica Acta ,499,(2010),40–47.
[109] K. Wattanakul, H. Manuspiya, N. Yanumet, Colloids and Surfaces A: Physicochem. Eng. Aspects, 369, (2010), 203-210.
[110] K. Sato, H.Horibe, T. Shirai, Y. Hotta, H. Nakano, H.Nagai, K.Mitsuishi, K. Watari, J. Mater. Chem., 20, (2010), 2749-2752.
[111] Y.L.Zhou, J.F.Zhi, P.F.Wang, Y.M.Chong, Y.S.Zou, W.J.Zhang, S.T.Lee, Applied physics letters, 92, 163105 (2008).
[112] 胡瑜怡,高熱傳導性聚醯亞胺複合材料之研究,朝陽科技大學,應用化學系碩士論文,2009。
[113] 翁振剛,奈米碳管/氮化硼/聚醯亞胺複合材料之研究,朝陽科技大學,應用化學系碩士論文, 2010。
[114] T.L. Li, S. L.C. Hsu, J. Phys. Chem. B, 114, (2010), 6825–6829.
[115] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, (2004),. 666-669.
[116] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Review of Modern Physics, 81, (2009), 109-162.
[117]材料世界網,2011/03.
[118] S. Bae, et al., Nature Nanotechnolog, 5 (2010) 574
[119]D. Richardson, "Targray Lunches Industry''s First Graphene Composition Anode," Nanowerk News, 2011.
[120] H.-M. Ju, S.-H. Huh, S.-H. Choi, and L.-L. Hong, "Structures of thermally and chemically reduced graphene," Materials Letters, vol. 64, 2010, pp. 357-360.
[121]Patel, Prachi, "Bigger, Stretchier Graphene", Technology Review, MIT, 2009-01-15
[122] L. Jiao, et al., Nature 458 (2009) 877
[123] D. V. Kosykin, et al. Nature 458 (2009) 872
[124] Z. Sun, et al., Nature 468 (2010) 549
[125] G. Y. Kim, M. C. Choi, D. Lee, C. S. Ha, Macromol. Mater. Eng. 2011, 296, 000–000
[126] N. D. Luonga, U. Hippia, J. T. Korhonenb, A. J. Soininenb, J. Ruokolainenb,L. S. Johanssonc, J. D. Namd, L. H. Sinhd, J. Seppäläa, Polymer, 52, (2011), 5237-5242
[127] H. Liu, Y. Li, T. Wang, Q. Wang, J. Mater. Sci.,18, (2011), 5975-5982
[128] M. Koo, J. S. Bae, S. E. Shim, D. Kim, D. G. Nam, J. W. Lee, G. W. Lee, J. H. Yeum, W. Oh, Colloid. Polym. Sci., 289, (2011), 1503-1509
[129] J. Y. Wang, S. Y. Yang, Y. L. Huang, H. W. Tien, W. K. Chin, Chen-Chi M. Ma, J. Mater. Chem., 21, (2011), 13569-13575
[130] D. Chen, H. Zhu, T. Liu, ACS App. Mater. &;Inter.,2, (2010), 3702-3708
[131] K. P. Pramoda, H. Hussain, H. M. Koh, H. R. Tan, C. B. He, J. Polym. Sci.: Part A: Polym. Chem., 48, (2010), 4262-4267

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top