跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊豪
研究生(外文):Chun-Hao Huang
論文名稱:太陽光電發電及其儲能系統於小型空調機之應用
論文名稱(外文):The Application of Photovoltaic Generation and Its Storage Energy System in Small-scale Air-conditioners
指導教授:趙貴祥
指導教授(外文):Kuei-Hsiang Chao
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:165
中文關鍵詞:太陽光電發電系統最大功率追蹤雙向直流-直流轉換器可拓理論軟性切換電能管理
外文關鍵詞:photovoltaic (PV) generation systemmaximum power point tracking (MPPT)bidirectional DC-DC converterextension theorysoft-switchingpower management strategy
相關次數:
  • 被引用被引用:13
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要目的在於從事一獨立型太陽光電發電系統之電力轉換器及系統電能管理之研究,並以小型空調機作為所提系統之負載進行其性能測試。所提系統架構包含一最大功率追蹤控制器、雙向升降壓型轉換器及電能管理系統。為進一步提升所提系統之性能,本論文針對最大功率追蹤控制器,提出一具有良好適應性之最大功率追蹤控制法,此方法係結合可拓理論(extension theory)與傳統擾動觀察法,使在最大功率追蹤過程中,可藉由可拓類別之辨識而自動調整追蹤步階之大小,進而達到良好之追蹤動態響應及穩態響應性能。此外,為降低所提可拓最大功率追蹤法於權重值選定上之複雜度,本論文亦發展一基於粒子群演算法之權重值最佳化決定流程,藉此作為可拓方法之權重值選定的依據。
其次,為進一步提升所提太陽光電發電系統之電能轉換效率,本論文亦研發一具有軟性切換功能之雙向升降壓型轉換器,此轉換器只需於傳統硬性切換式架構上,輔接一共振支路並藉由簡單之開關元件觸發策略,即可達到零電壓切換之功能,進而提升電能轉換之效能。最後,本論文以所提之智慧型最大功率追蹤控制器及雙向升降壓型軟性切換式轉換器組立一獨立型太陽光電發電系統,並供電至小型空調機。而為了妥善利用太陽光電發電系統之電能,亦提出一電能管理策略,並以可程式化系統晶片(programmable system-on-chip, PSoC)加以實現後,進行系統實際測試。所提電路架構及電能管理策略均經由一些模擬及實測結果驗証其有效性。

The main purpose of this thesis is to study power converters of a stand-alone photovoltaic (PV) power generation system and the power management system for small-scale air-conditioners. The proposed system structure includes a maximum power tracking (MPPT) controller, a bidirectional buck-boost converter and a power management system. To further improve the performance of the proposed system, an adaptive MPPT method with the combination of the extension theory and traditional perturbation and observation method was presented so that the step size of the maximum power tracking can be automatically adjusted using the identified extension category so as to achieve good dynamic and steady-state response of a stand-alone photovoltaic power generation system. In addition, to reduce the complexity of the proposed maximum power point tracking method based on extension theory in the weighting selection, an optimal decision process for the weight value based on the particle swarm optimizer was also developed.
Moreover, to further increase the conversion efficiency of the proposed photovoltaic generation power system, a bidirectional buck-boost converter with soft-switching technique was also developed in this study. The proposed soft-switching converter can achieve zero-voltage-switching function by augmenting a resonance branch in traditional converter and a simple modified switch trigger strategy, and thus, the efficiency of power converter can be greatly increased. Finally, the proposed intelligent MPPT controller and bidirectional soft- switching buck-boost converter were assembled together to form a stand-alone PV generation system that supplies power for the small-scale air-conditioner. For better using the energy from the PV power generation system, a power management strategy was also proposed in this study. The proposed power management strategy was implemented by the programmable system chip for actual testing. The proposed circuit architecture and power management strategy were verified by some simulation and experimental results.

中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XVIII
第一章 簡介 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文大綱 4
第二章 太陽光電應用於小型空調機之架構 6
2.1 前言 6
2.2 太陽光電發電系統 6
2.2.1 太陽能電池之特性 6
2.2.2 獨立型太陽光電發電系統之供電型式 11
2.2.3 既有太陽光電發電系統之最大功率追蹤法 14
2.3 空調機系統 21
2.4 磷酸鋰鐵電池之特性 23
第三章 智慧型太陽光電發電系統之最大功率追蹤法拓理論 25
3.1 前言 25
3.2 智慧型最大功率追蹤法 26
3.2.1 可拓理論 26
3.2.1.1 可拓物元概念 26
3.2.1.2 可拓數學 29
3.2.2 最大功率追蹤法之可拓物元建立 33
3.2.3 最大功率追蹤法之動態信號分析及特徵值選定 34
3.2.4 可拓物元模型之經典域與節域 36
3.3 智慧型權重值最佳化法 39
3.3.1 粒子群演算法 40
3.3.2 基於粒子群演算法之權重值最佳化 41
3.4 智慧型最大功率追蹤法之實現 47
3.4.1 可程式化系統晶片之介紹 47
3.4.2 直流/直流升壓型轉換器電路設計 51
3.5 模擬結果 60
3.6 實測結果 68
第四章 雙向升降壓型軟性切換式轉換器 76
4.1 前言 76
4.2 雙向升降壓型硬性切換式轉換器之電路原理分析 77
4.3 雙向升降壓型軟性切換式轉換器操作模式分析 83
4.4 雙向升降壓型軟性切換式轉換器之元件設計 102
4.5 模擬結果 104
4.6 實測結果 117
第五章 以太陽光電供電小型空調機之電能管理系統 131
5.1 前言 131
5.2 直流供電之電能管理架構 131
5.3 應用於電能調節之蓄電池容量設計 133
5.4 模擬結果 135
5.5 實測結果 142
第六章 結論 154
6.1 總結 154
6.2 未來研究方向 154
參考文獻 156
作者簡介 164

[1] 經濟部能源局,“能源消費季報”
http://www.moeaboe.gov.tw/opengovinfo/Plan/all/WorkStatisticsAll.aspx.
[2] 黃淳康,我國與世界各國之冷凍空調業分析,熱流技術工作室,2005。
[3] ESTIF, “Sun in Action II – A Solar Thermal Strategy for Europe” (2003)
[4] ESTIF, “Solar Thermal Markets in Europe, (Trends and MarketStatistics 2004) ”(2005)
[5] Henning, H. M. : Solare Klimatisierung von Gebäuden – eine Übersicht, Erneuerbare Energie(2002)
[6] PSIM User’s Manual, Powersim Inc., 2001-2003.
http://scutpe.100steps.net/Downloads/PSIM60/PSIM%206.0%20User%20Manual_CN.pdf.
[7] SANYO Photovoltaic Module HIP-230HDE1 Specifications,
http://www.glea.pt/downloads/painel_fotovoltaico_sanyo_220w.pdf.
[8] 蔡文,楊春燕,林偉初,可拓工程方法,科學出版社,1997。
[9] H. J. Chiu, and L. W. Lin“A Bidirectional DC-DC Converter for Fuel Cell Electric Vehicle Driving System,”IEEE Transactions on Power Electronics, Vol. 21, No. 4, pp. 950-958, July 2006.
[10] F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler“A New ZVS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,”IEEE Transactions on Power Electronics, Vol. 19, No. 1, pp. 54-65, January 2004.
[11] K. Yamamoto, E. Hiraki, T. Tanaka, M. Nakaoka, and T. Mishima, “Bidirectional DC-DC Converter with Full-bridge / Push-pull Circuit for Automobile Electric Power Systems,” Proceedings of IEEE PESC’06 Conference, pp. 1-5, June 2006.
[12] D. H. Ha, N. J. Park, K. J. Lee, D. G. Lee, and D. S. Hyun, “Interleaved Bidirectional DC-DC Converter for Automotive Electric Systems,” Proceedings of IEEE IAS’08 Conference, pp. 1-5, October 2008.
[13] Y. S. Lee, and Y. Y. Chiu,“Zero-Current-Switching Switched-Capacitor Bidirectional DC-DC Converter,”IEEE Transactions on Electric Power Applications, Vol. 152, No. 6, pp. 1525-1530, November 2005.
[14] F. Zhang, and Y. Yan,“Novel Forward-Flyback Hybrid Bidirectional DC-DC Converter,”IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1578-1584, May 2009.
[15] C. E. Kim, S. K. Han, K. H. Yi, W. J. Lee, and G. W. Moon, “A New High Efficiency ZVZCS Bi-directional DC/DC Converter for 42V Power System of HEVs,” Proceedings of IEEE PESC’05 Conference, pp. 792-797, June 2005.
[16] V. Bhajana, and S. R. Reddy, “A Novel ZVS-ZCS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,” Proceedings of IEEE PEDS 2009 Conference, pp. 12-17, November 2009.
[17] J. Zhang, R. Y. Kim, and J. S. Lai, “High-Power Density Design of a Soft-Switching High-Power Bidirectional DC-DC Converter,” Proceedings of IEEE PESC’06 Conference, pp. 1-7, June 2006.
[18] R. Y. Duan, and J. D. Lee“High-efficiency Bidirectional DC-DC Converter with Coupled Inductor,”IEEE Transactions on Power Electronics, Vol. 5, No. 1, pp. 115-123, January 2012.
[19] R. Y. Duan, and J. D. Lee, “Soft Switch Bidirectional DC-DC Converter with Coupled Inductor,” Proceedings of IEEE ICIEA Conference, pp. 2797-2802, June 2011.
[20] L. Schuch, C. Rech, H. L. Hey, H. A. Grundling, H. Pinheiro, and J. R. Pinheiro“Analysis and Design of a New High-Efficiency Bidirectional Integrated ZVT PWM Converter for DC-Bus and Battery-Bank Interface,”IEEE Transactions on Industry Applications, Vol. 42, No. 5, pp. 1321-1332, September 2006.
[21] 曹昭陽,狄大衛譯,應用太陽電池,五南圖書出版股份有限公司,2009。
[22] 沈輝,曾祖勤,太陽能光電技術,五南圖書出版股份有限公司,2008。
[23] 能源效益,
http://www.hk-phy.org/energy/alternate/solar_phy03_c.html
[24] 李靜如,太陽光電發電系統之電力調節器研究,國立勤益科技大學,碩士論文,2009。
[25] X. Liu, P. Wang, P. C. Loh, F. Gao, and F. H. Choo, “Control of Hybrid Battery/Ultra-capacitor Energy Storage for Stand-alone Photovoltaic System,” Proceedings of Energy Conversion Congress and Exposition Conference, pp. 336-341, September 2010.
[26] J. Lagorse, D. Paire, and A. Miraoui, “Hybrid Stand-Alone Power Supply Using PEMFC, PV and Battery ─ Modelling and Optimization,” Proceedings of Clean Electrical Power Conference, pp. 135-140, June 2009.
[27] J. A. Fatemeh, R. Gholamhossein, and A. Mehrdad, “Design of an Optimum Hybrid Renewable Energy System Considering Reliability Indices,” Proceedings of Electrical Engineering Conference, pp. 842-847, May 2010.
[28] K. W. R. Chew, and L. Siek, “Single Inductor Quad-Input-Dual- Output Buck Converter for Photovoltaic Systems,” The 36th Annual Conference of the IEEE Industrial Electronics Society, pp. 704-709, November 2010.
[29] H. Wang, and D. Zhang, “The Stand-alone PV Generation System with Parallel Battery Charger,” Proceedings of Electrical and Control Engineering Conference, pp. 4450-4453, June 2010.
[30] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Predictive &; Adaptive MPPT Perturb and Observe Method,” IEEE Transactions on Aerospace Electronic System, Vol. 43, No. 3, pp. 934-950, July 2007.
[31] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltage and Current-Based Maximum Power-Point Tracking,” IEEE Transactions on Energy Conversion, Vol. 17, No. 4, pp. 514-522, December 2002.

[32] T. Esram, and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transaction on Energy Conversion, Vol. 22, No. 2, pp.439-449, June 2007.
[33] F. Liu, S. Duan, B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2622-2628, July 2008.
[34] 肖鳳明,王清蘭,朱長庚,變頻空調器微電腦控制電路分析與速修技巧,機械工業出版社,2004。
[35] 變頻式冷氣之優點,台灣冷氣空調網,
http://www.airconditioner.com.tw/service_bf/area_09.htm
[36] A. Marongiu, A. Damiano, and M. Heuer, “Experimental Analysis of Lithium Iron Phosphate Battery Performances,” Proceedings of Industrial Electronics Conference, pp. 3420-3424, July 2010.
[37] Y. C. Hsieh, C. S. Moo, T. J. Tsai, and K. S. Ng, “High-Frequency Discharging Characteristics of LiFePO4 Battery,” Proceedings of Industrial Electronics and Applications Conference, pp. 3420-3424, June 2011.
[38] D. D. Patel, F. P. Tredeau, and Z. M. Salameh, “Temperature Effects on Fast Charging Large Format Prismatic Lithium Iron Phosphate Cells,” Proceedings of Vehicle Power and Propulsion Conference, pp. 1-4, September 2010.
[39] 徐貴鳳,蔡三元,橄欖石結構之鋰鐵磷酸/碳複合陰極材料之研究,國立成功大學,博士論文,2004。
[40] 「鋰鐵」與其他電池的比較,蘭陽動力,2010,
http://www.ly-battery.com/?FID=10&;CID=11&;category=5。
[41] N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, “Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis,”IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2610-2621, July 2008.
[42] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proceedings of IEEE International Conference, Vol. 4, pp. 1942-1948, December 1995.
[43] D. Srinivasan, W. H. Loo, and R. L. Cheu, “Traffic Incident Detection Using Particle Swarm Optimization,” Proceedings of IEEE SIS’03 Conference, pp. 144-151, April 2003.
[44] 蔡志輝,基於仿生物群追蹤演算法之太陽能最大功率追蹤器的研製,國立臺北科技大學,博士論文,2010。
[45] 郭信川,張建仁,劉清祥,”粒子群演算法於最佳化問題之研究” ,2004年科技與管理學術研討會,頁419-432,2004。
[46] PSoC3&;PSoC5 Overview, http://www.cypress.com/?id=2232.
[47] 梁志穎,PSoC嵌入式系統晶片-實作入門,旗標出版股份有限公司,2009。
[48] 施威銘研究室,PSoC開發入門實作-嵌入式微電腦控制發展系統,旗標出版股份有限公司,2010。
[49] “CY8C29466 Data Sheet,” Cypress Technology Inc, 2007.
http://www.alldatasheet.com/datasheet-pdf/pdf/199936/CYPRESS/CY8C29466.html.
[50] D. W. Hart, Introduction to Power Electronics, Perntice Hall, New York, 2003.
[51] 李仁豪,太陽能與市電併聯供電之智慧型交通號誌系統研製,國立勤益科技大學,碩士論文,2008。
[52] 邱嘉隆,太陽光電發電系統之最大功率追蹤及孤島檢測技術研發,國立勤益科技大學,碩士論文,2010。
[53] ACPL-T350 Photocoupler Specifications,
http://www.avagotech.com/docs/AV02-0308EN.
[54] HX20-P Current Transducer Specifications,
http://pdf1.alldatasheet.com/datasheet-pdf/view/181066/LEM/HX20-P.html.
[55] 李育嬃,基於修正型增量電導法之太陽光電發電系統最大功率追蹤控制,國立勤益科技大學,碩士論文,2011。
[56] PV Simulator-E4360A Specifications,
http://www.home.agilent.com/agilent/product.jspx?cc=TW&;lc=cht&;ckey=1370006&;nid=-35489.771280.00&;id=1370006&;pselect=SR.GENERAL.
[57] W. A. Tabisz, F. C. Lee, and D. Y. Chen, “A MOSFET Resonant Synchronous Rectifier for High-frequency DC/DC Converters,” Proceedings of IEEE PESC’90 Conference, pp. 769-779, June 1990.
[58] M. Rodriguez, D. G. Lamar, M. A. Perez de Azpeitia, R. Prieto, and J. Sebastian, “A Novel Adaptive Synchronous Rectification System for Low Output Voltage Isolated Converters,” IEEE Transactions on Industrial Electronics, Vol. 58, pp. 3511-3520, August 2011.
[59] S. P. Yang, J. L. Lin, and S. J. Chen, “ A Novel ZCZVT Forward Converter with Synchronous Rectification,” IEEE Transactions on Power Electronics, Vol. 21, pp. 912-922, July 2006.
[60] F. Weiyi, F. C. Lee, P. Mattavelli, and H. Daocheng, “A Universal Adaptive Driving Scheme for Synchronous Rectification in LLC Resonant Converters,” IEEE Transactions on Power Electronics, Vol. 27, pp. 3775-3781, August 2012.
[61] W. Z. Zhong, W. P. Zhong, W. W. C. Ho, and S. Y. Hui, “Generalized Self-Driven AC–DC Synchronous Rectification Techniques for Single- and Multiphase Systems,” IEEE Transactions on Industrial Electronics, Vol. 58, pp. 3287-3297, August 2011.
[62] 陳彥捷,雙模式控制返馳式轉換器最佳化設計,國立台灣科技大學,碩士論文,2010。
[63] F. Yang, Y. Jin, J. Liu, and Z. Du, “Design of Home-Based Solar Refrigeration System,” Proceedings of Sustainable Energy Conference, Vol. 2, pp. 31-34, January 2012.
[64] 沈輝,曾祖勤,太陽能光電技術,五南圖書出版股份有限公司,2008。
[65] LY-HVA096030 Li-Iron Rechargeable Battery,
http://www.ly-battery.com/?page=1&;FID=8&;ob=&;sc=DSC
[66] 許永和,介面設計與實習─使用LabVIEW,金華科技圖書股份有限公司,2003。
[67] LI-302P/LO-302P Renfoss Air Conditioner,
http://www.wptc.com.tw/shop/goods.php?id=4049

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊