跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭淑雯
研究生(外文):Shu-WenCheng
論文名稱:探討溫度、應力對於鎳鈦矯正線相變化行為及機械性質的影響
論文名稱(外文):Effect of temperature or stress on phase transformation behavior and mechanical property of nickel–titanium orthodontic wires
指導教授:劉佳觀李澤民李澤民引用關係
指導教授(外文):Jia-Kuang LiuJia-Kuang Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:71
中文關鍵詞:鎳鈦矯正線形狀記憶超彈性熱差分析儀熱循環永久形變
外文關鍵詞:NiTi wireshape memorysuperelasticityDSCthermal cyclingpermanent deformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
鎳鈦矯正線因為其形狀記憶、超彈性、高抗腐蝕強度、優良的機械性質及良好的生物相容性,而被廣泛使用於牙齒矯正上。由於溫度及壓力改變所造成的相轉變才能產生形狀記憶及超彈性,而鎳鈦矯正線的機械性質也受到此相轉變的影響。然而,口內溫度並非恆定,它會受到食物或者冷熱水溫度的影響。因此口內溫度的轉變可能會造成鎳鈦矯正線相變化行為及機械性質的轉變。回顧過往文獻,使用熱差分析儀(DSC)來探測鎳鈦矯正線的相變化溫度時,反覆的口腔溫度轉變會造成某些鎳鈦矯正線相變化行為上的改變。然而,此研究並沒有考量矯正線受到形變的影響,且缺乏對於機械性質的評估。所以本研究目的為利用熱循環測試合併形變,模擬受到彎折的矯正線在口腔多變的溫度變化影響下,分析其相變化溫度、機械性質的改變。本實驗使用的鎳鈦矯正線包含四種: (1) Nitinol Classic (2) Sentalloy (3) 27°C CuNiTi (4) 40°C CuNiTi。先用熱差分析儀檢測鎳鈦矯正線室溫下沒有給予形變時的相變化溫度做為控制組,而實驗組則是將沒有給予形變及給予3mm形變量的矯正線放在5~55°C,5000次熱循環的水浴中;另一實驗組則是將矯正線做3mm形變後,放在37°C下經過等同5000次熱循環時間。之後用DSC再次確認相變化溫度;並且用萬用測試機做三點彎曲測試,獲得應力-應變圖,分析其機械性質;最後使用小角度X光散射儀(Micro XRD)補充對於相變化行為的解釋。DSC結果顯示:Sentalloy,27°C and 40°C CuNiTi在熱循環合併給予形變量後,其相變化溫度有明顯改變。37°C下機械性質測試顯示: Nitinol Classic,27°C CuNiTi在熱循環合併給予形變量後,應力遲滯圈變窄;在熱循環合併給予形變量後Sentalloy,27°C and 40°C CuNiTi產生永久形變。利用Micro XRD在37°C及55°C下,發現Sentalloy在熱循環合併給予形變量後,存在著M phase (020);Sentalloy,27°C CuNiTi在熱循環合併給予形變量後,A phase (110)的強度明顯減弱。結論是反覆的溫度變化合併給予彎折力量時會造成某些鎳鈦矯正線相變化行為的改變,而這些改變會使鎳鈦線產生微結構的缺陷,進而影響臨床使用。
NiTi wires are widely used within orthodontics as they combine shape memory and superelasticity resulting from phase transformation induced by stress or temperature. However, intraoral temperature isn’t constant. Previous studies revealed that temperature fluctuations may contribute to phase transformation changes in some NiTi wires detected by differential scanning calorimetry (DSC). However, they didn’t incorporate the bending stress factor and lack of mechanical property examinations. The aims of this study were to use thermal cycling combined with bending stress to simulate deflected NiTi wire under fluctuated mouth temperature, and to investigate phase transformation changes and mechanical property of NiTi wires after thermal cycling. 4 types of NiTi wires were used: (1) Nitinol Classic (2) Sentalloy (3) 27°C CuNiTi (4) 40°C CuNiTi. As-received wire segments were checked for temperature transitional ranges (TTR) by DSC at first. Samples of experimental groups were with or without 3mm deflection and then put into thermal cycling water bath (5~55°C, 5000 cycles) or put at constant temperature (37°C). After that, samples were again checked for TTR with DSC, analyzed with three points bending test for mechanical property. Finally, using micro-XRD provided complementary information about the phase transformation behavior. DSC results showed that phase transformation behaviors of Sentalloy, 27°C and 40°CCuNiTi after thermal cycling combined with stress were different from that of as-received condition. Three points bending test at 37°C showed that stress hysteresis of Nitinol Classic and 27°C CuNiTi after thermal cycling combined with stress became narrowing. In addition, there was a plastic deformation on these three NiTi wires after thermal cycling combined with stress. XRD data at 37°C and 55°C showed that there’s a M phase (020) persisting in Sentalloy after thermal cycling combined with stress. The A phase (110) intensity of Sentalloy and 27°C CuNiTi after thermal cycling combined with stress were decreasing. The conclusions were that temperature fluctuations combined with bending stress may contribute to phase transformation changes in some NiTi wires which would result in structural defects and decreased clinical performance.
Chapter 1 Introduction 1
1-1 Background 1
1-2 Literature review 2
1-2-1 History of nickel titanium wire 2
1-2-2 Metallurgy and phase transformation of nickel titanium wire 4
1-2-3 Shape memory and superelasticity 4
1-2-4 Tools for phase present and TTR detection 6
1-2-5 Selection of thermal cycling regimen 7
1-2-6 Variations of the mechanical property evaluation 8
1-3 Motivation 9
1-4 Objective 10
Chapter 2 Materials and methods 11
2-1 Experimental flowchart 11
2-2 Materials 12
2-2-1 Experimental materials 12
2-2-2 Sample preparation and thermal cycling regimen 12
2-3 Differential scanning calorimetry (DSC) analysis 13
2-4 Three-point bending test 13
2-5 Micro X-ray diffraction (Micro-XRD) analysis 14
Chapter 3 Results 15
3-1 Differential scanning calorimetry (DSC) analysis 15
3-2 Three-point bending test 16
3-2-1 Load-deflection curves under constant temperatures 16
3-2-1-1 Load-deflection curves at 37°C 16
3-2-1-2 Load-deflection curves at 5°C 17
3-2-1-3 Load-deflection curves at 55°C 17
3-2-2 Comparison of load-deflection curves under different temperatures 18
3-3 Micro X-ray diffraction (Micro-XRD) analysis 19
3-3-1 Micro X-ray diffraction at 37°C 19
3-3-2 Micro X-ray diffraction at 5°C 19
3-3-3 Micro X-ray diffraction at 55°C 20
Chapter 4 Discussion 21
4-1 Differential scanning calorimetry (DSC) analysis 21
4-1-1 Comparisons of Af value between present data with previous ones 21
4-1-2 Changes of Rs/As/Af temperature after thermal cycling/stress 22
4-1-3 Changes of Rs/Rf/Ms/Mf temperature after thermal cycling/stress 23
4-2 Three-point bending test 24
4-2-1 The relationship among the load, test temperature and Af value 24
4-2-2 Stress hysteresis changes after the thermal cycling/stress 25
4-2-3 Plastic deformations after thermal cycling+ stress at 37°C 26
4-3 Micro X-ray diffraction (Micro-XRD) analysis 26
4-3-1 Micro X-ray diffraction at 37°C and 55°C 26
4-3-2 Micro X-ray diffraction at 5°C 27
4-4 The effect of copper addition 27
4-5 Clinical implications of NiTi wires affected by thermal cycling/stress 28
Chapter 5 Conclusion 30
References 31

Airoldi G, Riva G, Vanelli M, Filippi d V, Garattini G (1997). Oral environment temperature changes induced by cold/hot liquid intake. Am J Orthod Dentofac Orthop 112(1):58-63.
Andreasen GF, Brady PR (1972). A use hypothesis for 55 Nitinol wire for orthodontics. The Angle Orthodontist 42(2):172-177.
Andreasen GF, Morrow RE (1978). Laboratory and clinical analyses of nitinol wire. American journal of orthodontics 73(2):142-151.
Barclay CW, Spence D, Laird WRE (2005). Intra-oral temperatures during function. Journal of Oral Rehabilitation 32(12):886-894.
Barwart O (1996). The effect of temperature change on, the load value of Japanese NiTi coil springs in the superelastic range. Am J Orthod Dentofac Orthop 110(5):553-558.
Berzins DW, Roberts HW (2010). Phase transformation changes in thermocycled nickel-titanium orthodontic wires. Dent Mater 26(7):666-674.
Biermann MC, Berzins DW, Bradley TG (2007). Thermal analysis of as-received and clinically retrieved Copper-nickel-titanium orthodontic archwires. The Angle Orthodontist 77(3):499-503.
Bishara SE, Winterbottom JM, Sulieman A-HA, Rim K, Jakobsen JR (1995). Comparisons of the thermodynamic properties of three nickel-titanium orthodontic archwires. The Angle Orthodontist 65(2):117-122.
Bourauel C, Scharold W, Jäger A, Eliades T (2008). Fatigue failure of as-received and retrieved NiTi orthodontic archwires. Dent Mater 24(8):1095-1101.
Bradley TG, Brantley WA, Culbertson BM (1996). Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop 109(6):589-597.
Brantley WA, editor (2001). Orthodontic materials: scientific and clinical aspects. New York: Georg Thieme Verlag.
Brantley WA, Iijima M, Grentzer TH (2002). Temperature-modulated DSC study of phase transformations in nickel-titanium orthodontic wires. Thermochim Acta 392(329-337.
Brantley WA, Iijima M, Grentzer TH (2003). Temperature-modulated DSC provides new insight about nickel-titanium wire transformations. Am J Orthod Dentofac Orthop 124(4):387-394.
Buehler WJ, Gilfrich JV, Wiley RC (1963). Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics 34(5):1475-1477.
Burstone CJ, Qin B, Morton JY (1985). Chinese NiTi wire—A new orthodontic alloy. American journal of orthodontics 87(6):445-452.
Coluzzi B, Biscarini A, Di Masso L, Mazzolai FM, Staffolani N, Guerra M et al. (1996). Phase transition features of NiTi orthodontic wires subjected to constant bending strains. Journal of Alloys and Compounds 233(1–2):197-205.
Delaey L, Krishnan RV, Tas H, Warlimont H (1974). Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Journal of Materials Science 9(9):1521-1535.
Fischer-Brandies H, Es-Souni M, Kock N, Raetzke K, Bock O (2003). Transformation behavior, chemical composition, surface topography and bending properties of five Selected 0.016' × 0.022' NiTi archwires. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie 64(2):88-99.
Fukuda T, Saburi T, Chihara T, Tsuzuki Y (1995). Mechanism of B2-B19-B19' transformation in shape-memory Ti-Ni-Cu alloys. Mater Trans JIM 36(10):1244-1248.
Gil FJ, Planell JA (1999). Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. Journal of Biomedical Materials Research 48(5):682-688.
Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I (2002). Mechanical behavior at different temperatures and stresses for superelastic nickel–titanium orthodontic wires having different transformation temperatures. Dent Mater 18(1):88-93.
Isao K, Hiroki O, Rohit S (1999). Relationship between Af temperature and load changes in Ni-Ti orthodontic wire under different thermomechanical conditions. Dental materials journal 18(4):403-412.
Kapila S, Sachdeva R (1989). Mechanical properties and clinical applications of orthodontic wires. Am J Orthod Dentofac Orthop 96(2):100-109.
Khier SE, Brantley WA, Fournelle RA (1991). Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop 99(4):310-318.
Kusy RP, Dilley GJ (1984). Elastic property ratios of a triple-stranded stainless steel arch wire. American journal of orthodontics 86(3):177-188.
Kusy RP (1997). A review of contemporary archwires: Their properties and characteristics. Angle Orthod 67(3):197-207.
Lee YH, Lim BS, Lee YK, Kim CW, Baek SH (2010). Comparison of transition temperature range and phase transformation behavior of nickel-titanium wires. Korean J Orthod 40(1):40-49.
Miller DA, Lagoudas DC (2001). Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Mater Sci Eng A-Struct Mater Prop Microstruct Process 308(1-2):161-175.
Miura F, Mogi M, Ohura Y, Hamanaka H (1986). The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop 90(1):1-10.
Miyazaki S, Igo Y, Otsuka K (1986). Effect of thermal cycling on the transformation temperatures of TiNi alloys. Acta Metallurgica 34(10):2045-2051.
Miyazaki S, Otsuka K (1989). Development of shape memory alloys. ISIJ Int 29(5):353-377.
Moore RJ, Watts JTF, Hood JAA, Burritt DJ (1999). Intra-oral temperature variation over 24 hours. Eur J Orthodont 21(3):249-261.
Oltjen JM, Duncanson MG, Ghosh J, Nanda RS, Frans Currier G (1997). Stiffness-deflection behavior of selected orthodontic wires. The Angle Orthodontist 67(3):209-218.
Otto B (1996). The effect of temperature change on, the load value of Japanese NiTi coil springs in the superelastic range. Am J Orthod Dentofac Orthop 110(5):553-558.
Perkins J (1983). Martensitic transformation cycling and the phenomenon of two-Way shape memory training. MRS Online Proceedings Library.
Pun DK, Berzins DW (2008). Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel–titanium-based orthodontic wires at various temperatures. Dent Mater 24(2):221-227.
Reitan K (1967). Clinical and histologic observations on tooth movement during and after orthodontic treatment. American journal of orthodontics 53(10):721-745.
Sakima MT, Dalstra M, Melsen B (2006). How does temperature influence the properties of rectangular nickel–titanium wires? The European Journal of Orthodontics 28(3):282-291.
Santoro M, Beshers DN (2000). Nickel-titanium alloys: Stress-related temperature transitional range. Am J Orthod Dentofac Orthop 118(6):685-692.
Santoro M, Nicolay OF, Cangialosi TJ (2001). Pseudoelasticity and thermoelasticity of nickel-titanium alloys: A clinically oriented review. Part I: Temperature transitional ranges. Am J Orthod Dentofac Orthop 119(6):587-593.
Segner D, Ibe D (1995). Properties of superelastic wires and their relevance to orthodontic treatment. The European Journal of Orthodontics 17(5):395-402.
Stroz D, Bojarski Z, Ilczuk J, Lekston Z, Morawiec H (1991). Effect of thermal cycling on as-quenched and aged nickel-rich Ni-Ti alloy. Journal of Materials Science 26(7):1741-1748.
Proffit WR, editor (2007). Contemporary orthodontics: Mosby.
Tadaki T, Nakata Y, Shimizu K (1987). Thermal cycling effects in an aged Ni-rich Ti-Ni shape memory alloy. Transactions of the Japan Institute of Metals 28(11):883-890.
Thompson SA (2000). An overview of nickel–titanium alloys used in dentistry. International Endodontic Journal 33(4):297-310.
Todoroki T, Tamura H (1986). Effect of the heat-treatment after cold-working on the phase-transformations in Ti-Ni alloys. J Jpn Inst Met 50(1):1-10.
Tonner RIM, Waters NE (1994). The characteristics of super-elastic Ni-Ti wires in three-point bending. Part l: The effect of temperature. The European Journal of Orthodontics 16(5):409-419.
Uchil J, Kumara KG, Mahesh KK (2003). Effect of cooling process during heat treatment on martensitic transformation in Ni-Ti and Ni-Ti-Cr alloys. J Phys IV 112(747-750.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top