# 臺灣博碩士論文加值系統

(18.205.192.201) 您好！臺灣時間：2021/08/05 10:42

:::

### 詳目顯示

:

• 被引用:1
• 點閱:187
• 評分:
• 下載:29
• 書目收藏:0
 本文發展以Reissner混合變分原理(Reissner’s mixed variational theorem, RMVT)之有限圓柱層狀元素法(finite cylindrical layer methods , FCLMs)，應用於具簡支承的功能性材料三明治圓柱殼結構之三維自然振動分析，其結合方式為上下強度高的均質材料薄層與強度較低的功能性材料核心厚夾層，其中核心夾層的功能性材料之材料性質則假設為沿厚度方向呈指數律分佈。文中將該圓柱殼沿厚度方向均勻等分細切成各層圓柱層狀元素，各層狀元素之位移場與應力場以三角函數與Lagrange多項式作為內插函數進行建構，其內插函數沿厚度方向之假設則可自行選擇採用線性、二次或三次多項式函數，並以h-refinement方式進行精確性與收斂性的探討。本文應用Reissner混合變分原理之有限圓柱層狀元素法分析之數值範例與三維真解比較，其結果有相當好的精確性與收斂速度。
 Based on Reissner’s mixed variational theorem (RMVT), we developed finite cylindrical layer methods (FCLMs) for the quasi-three-dimensional (3D) free vibration analysis of simply-supported, functionally graded material (FGM) sandwich circular hollow cylinders. The FGM sandwich cylinder consists of a thick and soft FGM core bounded with two thin and stiff homogeneous material face sheets, in which the material properties of the FGM core are assumed to obey an exponent-law varying exponentially with the thickness coordinate. In this formulation, the FGM sandwich cylinder is divided into a number of equal-thickness cylindrical layers, where the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-surface variations of the field variables of each individual layer, respectively. An h-refinement process instead of a p-refinement one is adopted to yield the convergent solutions in this study, and the layerwise linear, quadratic or cubic function distribution through the thickness coordinate is thus assumed for the related field variables. The accuracy and convergence of the RMVT-based FCLMs developed in this article are assessed by comparing their solutions with the exact 3D solutions available in the literature.
 中文摘要 Ⅰ英文摘要 Ⅱ誌謝 Ⅲ目錄 Ⅳ表目錄 Ⅴ圖目錄 Ⅵ第一章 緒論1.1 研究動機與文獻回顧 1第二章 Reissner混合變分原理2.1 位移場與應力場量假設 62.2 Reissner能量函數 102.3 Reissner混合變分原理 11第三章 應用問題解析3.1 邊界條件與無因次化 133.2 雙傅立葉級數展開法 14第四章 數值範例與討論4.1 雙層複合材料中空圓柱殼 184.2 四層複合材料中空圓柱殼 204.3 指數型分佈功能性材料中空圓柱殼 21第五章 結論 24參考文獻 25
 [1] Noor AK, Burton WS, Bert CW. Computational model for sandwich panels and shells. Applied Mechanics Reviews 1996;49:155_99.[2] Noor AK, Burton WS, Peters JM. Assessment of Computational models for multilayered composite cylinders. International Journal of Solids and Structures 1991;27:1269_86.[3] Carrera E. Historical review of zig-zag theories for multilayered plates and shells. Applied Mechanics Reviews 2003;56:287-308.[4] Carrera E, Brischetto S. A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Applied Mechanics Reviews 2009;62:1_17.[5] Saravanos DA, Heyliger PR. Mechanics and computational models for laminated piezoelectric beams, plates, and shells. Applied Mechanics Reviews 1999;52:305_20.[6] Wu CP, Chiu KH, Wang YM. A review of the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC_Computers, Materials, ＆ Continua 2008;8:93_132.[7] Carrera E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks. Archives of Computational Methods in Engineering 2003;10:215_96.[8] Carrera E, Ciuffreda A. A unified formulation to assess theories of multilayered plates for various bending problems. Composite Structures 2005;69:271_93.[9] Carrera E, Brischetto S, Robaldo A. Variable kinematic model for the analysis of functionally graded material plates. AIAA Journal 2008;46:194_203.[10] Cinefra M, Belouettar S, Soave M, Carrera E. Variable kinematic models applied to free-vibration analysis of functionally graded material shells. European Journal of Mechanics A/Solids 2010;29:1078_87.[11] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part I: Governing equations. Composite Structures 2009;87:1_11.[12] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part II: Layerwise theories. Composite Structures 2009;87:12_22.[13] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part III: Advanced mixed high order shear deformation theories. Composite Structures 2009;87:183_94.[14] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part IV: Zig-zag theories. Composite Structures 2009;87:195_205.[15] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part V: Results. Composite Structures 2009;88:1_16.[16] Wu CP, Lin CC. Analysis of sandwich plates using a mixed finite element. Composite Structures 1993;25:397_405.[17] Wu CP, Liu CC. Mixed finite element analysis of thick doubly curved laminated shells. Journal of Aerospace Engineering 1995;8:43_53.[18] Pradyumna S, Bandyopadhyay J.N. Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. Journal of Sound and Vibration 2008;318:176-192[19] Carrera E, Petrolo M. Guidelines and recommendations to construct theories for metallic and composite plates. AIAA Journal 2010;48:2852_66.[20] Leissa AW, Jinyoung S. Three-dimensional vibrations of truncated hollow cones. Journal of Vibration and Control 1995;1:145_58.[21] Kang JH, Leissa AW. Free vibrations of thick, complete conical shells of revolution from a three-dimensional theory. Journal of Applied Mechanics 2005;72:797_800.[22] Ramirez F, Heyliger PR, Pan E. Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Composites Part B: Engineering 2006;37:10_20.[23] Ramirez F, Heyliger PR, Pan E. Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mechanics of advanced materials and structures 2006;13:249_66.[24] Ye JQ, Sheng HY, Qin QH. A state space finite element for laminated composites with free edges and subjected to transverse and in-plane loads. Computers and Structures 2004;82:1131_41.[25] Sheng HY, Ye JQ. A three-dimensional state space finite element solution for laminated composite cylindrical shells. Computer Methods in Applied Mechanics and Engineering 2003;192:2441_59.[26] Chen WQ, Bian ZG, Ding HJ. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. International Journal of Mechanical Sciences 2004;46:159_71.[27] Nie GJ, Zhong Z. Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Computer Methods in Applied Mechanics and Engineering 2007;196:4901_10.[28] Liew KM, Bergman LA, Ng TY, Lam KY. Three-dimensional vibration of cylindrical shell panels-solution by continuum and discrete approaches. Computational Mechanics 2000;26:208_21.[29] Liew KM, Peng LX, Ng TY. Three-dimensional vibration analysis of spherical shell panels subjected to different boundary conditions. International Journal of Mechanical Sciences 2002;44:2103_17.[30] Wu CP, Tsai YH. Asymptotic DQ solutions of functionally graded annular spherical shells. European Journal of Mechanics A/Solids 2004;23:283_99.[31] Wu CP, Wang YM, Hung YC. Asymptotic finite strip analysis of doubly curved laminated shells. Computational Mechanics 2001;27:107_18.[32] Liew KM, Lim CW, Kitipornchai S. Vibration of shallow shells: a review with bibliography. Applied Mechanics Reviews 1997;50:431_44.[33] Qatu M. Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells. Applied Mechanics Reviews 2002;55:325_49.[34] Qatu M. Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells. Applied Mechanics Reviews 2002;55:415_34.[35] Qatu M, Sullivan RW, Wang W. Recent research advances on the dynamic analysis of composite shells: 2000_2009. Composite Structures 2009;93:14_31.[36] Cheung YK, Jiang CP. Finite layer method in analysis of piezoelectric composite laminates. Computer Methods in Applied Mechanics and Engineering 2001;191:879_901.[37] Akhras G, Li WC. Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method. Smart Materials and Structures 2007;16:561_69.[38] Akhras G, Li WC. Three-dimensional thermal buckling analysis of piezoelectric composite plates using the finite layer method. Smart Materials and Structures 2008;17:1_8.[39] Akhras G, Li WC. Three-dimensional stability analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method. Journal of Intelligent Material Systems and Structures 2010;21:719_27.[40] Wu CP, Li HY. The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates. Composite Structures 2010;92:2476_96.[41] Wu CP, Li HY. RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates. CMC-Computers, Materials, ＆ Continua 2010;19:155_98.[42] Wu CP, Chiu KH, Wang YM. RMVT-based meshless collocation and element-free Galerkin methods for the analysis of quasi-3D analysis of multilayered composite and FGM plates. Composite Structures 2011;93:923_43.[43] Wu CP, Chiu KH. RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates. Composite Structures 2011;93:1433_48.[44] Noor AK, Rarig PL. Three-dimensional solutions of laminated cylinders. Computer Methods in Applied Mechanics and Engineering 1974;3:319_34.[45] Wu CP, Chen H. Exact solutions of free vibration of functionally graded piezoelectric material sandwich circular hollow cylinders using a modified Pagano method. Submitted to Applied Mathematics and Computation 2011.[46] Wu CP, Lu YC. A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Composite Structures 2009;90:363_72.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 流場與彈性圓柱互制系統之數值模擬 2 圓柱橫向振動對昇力之影響機理 3 均勻流場橫向振動圓柱對有效昇力之影響機理 4 通過橫向振動圓柱流場之數值模擬 5 利用三維彈性理論配合Ritz法分析具內部裂縫矩形功能梯度材料板之振動問題 6 虛位移原理有限圓柱層殼元素法在功能性材料三明治圓柱殼分析之歸一理論 7 Reissner混合變分原理無網格適點與無元素Galerkin方法之發展與其在功能性梯度材料板殼三維靜動態行為分析之應用 8 改良Pagano方法於功能性電磁彈性材料板之三維自由振動分析 9 功能梯度矩形板受週期載重之強迫振動分析 10 強制振動圓柱流場結構之研究 11 應用Reissner-Mindlin離散層理論於功能性壓電材料板自然振動分析 12 振動圓柱對加熱凸塊之熱流分析 13 應用微分再生核方法於複合圓錐截柱層殼之自然振動分析 14 微觀力學應用於複材疊層板之振動分析 15 振動圓柱上之強制熱對流現象

 無相關期刊

 1 虛位移原理有限圓柱層殼元素法在功能性材料三明治圓柱殼分析之歸一理論 2 台灣地區成人體型狀況及其體重控制行為相關因素探討 3 受軸壓旋轉複合疊層圓錐截柱殼基本振頻對纖維角度之最佳化分析 4 Reissner混合變分原理無網格適點與無元素Galerkin方法之發展與其在功能性梯度材料板殼三維靜動態行為分析之應用 5 金/錫-鋅合金/銅三明治反應偶之界面反應 6 高雄市公共管線管理平台 使用現況與效益評估之研究 7 消防機關執行消防安全檢查執行現況分析之探討 -以高雄市為例 8 應用科技接受模式探討消防檢修申報網路化之推廣意願 9 建築資訊模型(BIM)於工程進度、成本估算之實務應用 10 應用支援向量機改善反彈錘測試之強度預測 11 Ni/Sn-xZn/Cu三明治結構反應偶之界面反應 12 都卜勒流速儀定位系統之感測器對準偏差校正 13 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較 14 簡諧點荷重之基盤反應 15 虛位移原理有限圓柱層殼元素法於功能性梯度材料中空圓柱殼承受軸、圍壓組合載重之三維挫屈分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室