跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周文彥
研究生(外文):Wen-YenChou
論文名稱:橋梁基礎沖刷深度與橋梁自然頻率之關聯性研究
論文名稱(外文):Investigation of the Relationship between Bridge Natural Frequencies and Foundation Scour Depth
指導教授:朱聖浩
指導教授(外文):Shen-Haw Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:88
中文關鍵詞:橋梁基礎沖刷深度自然頻率隨機遞減法亞伯拉罕時域法快速傅立葉轉換法
外文關鍵詞:Bridge foundationScour depthNatural frequencyRandom decrement methodIbrahim time domain methodFast Fourier Transform method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
在台灣建造的橋梁大部分都會橫跨河川,因此橋梁基礎的穩定性是一個重要的議題。當橋梁被沖垮時會造成人員的傷亡以及交通阻塞與經濟上的損失。颱風來臨時,橋梁基礎常會因為被大水沖刷而造成崩塌。因此,橋梁基礎的沖刷深度可以被應用於判斷橋梁是否有崩塌的危險。然而,要直接量測橋梁基礎的沖刷深度是困難的,原因是因為在台灣所建造的橋梁基礎通常都會在水面以下,特別是在洪水來的時候。為了克服此問題,本篇論文利用橋梁自然頻率去估計基礎的沖刷深度。首先許多不同沖刷深度以及不同土壤強度與不同基樁排列形式的橋梁模型會被建立,接著利用有限元素法處理土壤¬¬-橋梁互制之問題以求得橋梁之自然頻率,最後橋梁自然頻率與基礎沖刷深度之間的關係可以被找到並可應用於估計基樁裸露的程度。此外,本篇論文利用一個高斯的通式來擬合頻率資料的曲線,所取得的曲線擬合公式是可以被接受的並且可以用於找出橋梁自然頻率與基礎沖刷深度之間的關係。此論文也做了一個現地量測試驗,藉由量測四草大橋的頻率,利用隨機遞減法、亞伯拉罕時域法以及快速傅立葉轉換法辨識出橋梁真正的自然頻率。
Most bridges in Taiwan are built across the river, so the stability of the bridge foundation is an important issue. As the bridge is burst, it may cause the damage for the human life, the interruption of the traffic, and the economic loss. When the typhoon invades, the bridge foundation may be scoured and cause the bridge collapse. Therefore, the bridge foundation scour depth can be applied to judge whether the bridge are in danger or not. However, it is difficult to measure the bridge foundation scour depth directly because most bridge foundations in Taiwan are under water, especially when the floods come. To overcome the problem, this thesis provides the bridge natural frequency to estimate the foundation scour depth. In the beginning, the bridge models for the various scour depths with the different soil strengths and the different style of the pile foundations are created, and the finite element method will be applied to determine the bridge natural frequency with the soil-bridge interaction problem. Then, the relationship between the bridge natural frequency and the foundation scour depth can be obtained to estimate the pile exposure level. Moreover, a general Gaussian function is applied to fit the curve of the frequency data. The formula of the curve fitting obtained in this study is acceptable to find the relationship between the bridge natural frequency and the foundation scour depth. A field experiment was performed in this thesis. By measuring the frequencies of the Sih-tsau Bridge, the random decrement method, Fast Fourier Transform method, and the Ibrahim time domain method are applied to identify the true natural frequency of the bridge.
摘要 I
Abstract II
誌謝 III
Content IV
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Background and purpose 1
1.2 Literature review 2
1.2.1 The research of pile foundations scouring 2
1.2.2 Interaction between soil and bridge structure 5
1.3 Brief account of research 7
Chapter 2 Theory Illustration 10
2.1 Introduction 10
2.2 Random decrement method 10
2.3 Fast Fourier Transform theorem 12
2.4 Ibrahim time domain method 14
2.5 Relationship between the bridge natural frequency and the foundation scour depth 19
2.5.1 Evaluating the natural frequency of the bridge structure 20
2.5.2 Parallel subspace iteration method 22
2.6 The field experimental data applied in the theorems 23
Chapter 3 The Programs and the Input files 33
3.1 Introduction 33
3.2 Programs for the finite element analysis 33
3.2.1 The AB program 33
3.2.2 The AD program 34
3.2.3 The AE program 34
3.2.4 The AN program 34
3.2.5 The GBRIDGE program 35
3.2.6 The VASJAPAN program 35
3.2.7 The PSEC program 35
3.2.8 The CHANGE program 35
3.3 Procedure of the finite element analysis 36
Chapter 4 Analysis of the Bridge Natural Frequency and the Foundation Scour Depth 41
4.1 Introduction 41
4.2 Bridge model overview 41
4.3 Introduction of studied cases 42
4.4 Comparisons and brief conclusion 44
4.4.1 Comparisons 44
4.4.2 Brief conclusions 46
4.5 Curve fitting to find a formula 48
Chapter 5 Conclusions and Future Works 73
5.1 Conclusions 73
5.2 Future works 75
References 76
Appendix I 82
Appendix II 83
Appendix III 85


[1]Landers, N. (1992), “Bridge Scour Data Management, American Society of Civil Engineers.
[2]Dargahi, B. (1990), “Controlling Mechanism of Local Scouring, Journal of Hydraulic Engineering, ASCE, Vol.116, pp.1197-1214.
[3]Melville, B.W., Raudkivi, A.J. (1996), “Effects of Foundation Geometry on Bridge Pier Scour, Journal of Hydraulic Engineering, ASCE, Vol.122, pp.203-209.
[4]Martin-Vide, J.P. (1998), “Local Scour at Piled Bridge Foundations, Journal of Hydraulic Engineering, ASCE, Vol.124, pp.439-444.
[5] Dey, S. (1999), “Time-variation of Scour in the Vicinity of Circular Piers, Proceeding of the Institution of Civil Engineers-Water Maritime and Energy, ASCE, Vol.136, pp.67-75.
[6]Oliveto, G., Harger, W.H. (2002), “Temporal Evolution of Clear-Water Pier and Abutment Scour, Journal of Hydraulic Engineering, ASCE, Vol.128, pp.811-120.
[7]Coleman, E. (2005), “Clearwater Local Scour at Complex Piers, Journal of Hydraulic Engineering, ASCE, Vol.131, pp.330-334.
[8]Raikar, R.V., Dey, S. (2005), “Scour of Gravel Beds at Bridge Piers and Abutments, Proceedings of the Institution of Civil Engineers-Water Management, Vol.158, pp.157-162.
[9]Kothyari, U.C., Hager, W.H., Oliveto, G. (2007), “Generalized Approach for Clear-Water Scour at Bridge Foundation Elements, Journal of Hydraulic Engineering, ASCE, Vol.133, pp.1229-1240.
[10]Firat, M. (2009), “Scour Depth Prediction at Bridge Piers by Anfis Approach, Proceedings of the Institution of Civil Engineering-Water Management, Vol.162, pp.279-288.
[11]Firat, M., Gungor, M. (2009), “Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour Depth around Bridge Piers, Advances in Engineering Software, Vol.40, pp.731-737.
[12]Lai, J.S., Chang, W.Y., Yen, C.L. (2009), “Maximum Local Scour Depth at Bridge Piers under Unsteady Flow, Journal of Hydraulic Engineering, ASCE, Vol.135, pp.609-614.
[13]Ballio, F., Teruzzi, A., Radice, A. (2009), “Constriction Effects in Clear-Water Scour at Abutments, Journal of Hydraulic Engineering, ASCE, Vol.135, pp.140-145.
[14]Yanmaz, A.M., Kose, O. (2009), “A Semi-Empirical Model for Clear-Water Scour Evolution at Bridge Abutments, Journal of Hydraulic Research, Vol.135, pp.140-145.
[15]Bozkus, Z., Cesme, M. (2010), “Reduction of Scouring Depth by Using Inclined Piers, Canadian Journal of Civil Engineering, Vol.37, pp.1621-1630.
[16]Harger, W.H., Unger, J. (2010), “Bridge Pier Scour under Flood Waves, Journal of Hydraulic Engineering, ASCE, Vol.136, pp.842-847.
[17]Kaya, A. (2010), “Reduction of Scouring Depth by Using Inclined Piers, Computers and Geotechnics, Vol.37, pp.413-418.
[18]Etemad-Shahidi, A., Ghaemi, N. (2011), “Model Tree Approach for Prediction of Pile Groups Scour Due to Waves, Ocean Engineering, Vol.38, pp.1522-1527.
[19]Lu, J.Y., Shi, Z.Z., Hong, J.H., Lee, J.J., Raikar, R.V. (2011), “Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers, Journal of Hydraulic Engineering, ASCE, Vol.137, pp.45-56.
[20]Sarlak, N., Tigrek, S. (2011), “Analysis of Experimental Data Sets for Local Scour Depth around Bridge Abutments Using Artificial Neural, WATER SA, Vol.37, pp.595-202.
[21]Pagliara, S., Carnacina, I. (2011), “Influence of Large Woody Debris on Sediment Scour at Bridge Piers, International Journal of Sediment Research, Vol.26, pp.121-135.
[22]Karami, H., Ardeshir, A., Saneie, M., Salamatian, S.A. (2012), “Prediction of Time Variation of Scour Depth around Spur Dikes Using Neural Networks, Journal of Hydroinformatics, Vol.14, pp.180-191.
[23]Smith, H.A., WU, W.H., BORJA, R.I. (1994), “Structural Control Considering Soil-Structure Interaction Effects, Earthquake Engineering & Structural Dynamics, Vol.23, pp.609-629.
[24]Noorzaei, J., Viladkar, M.N., Godbole, P.N. (1995), “Influence of Strain-Hardening on Soil-Structure Interaction of Framed Structures, Computers & Structures, Vol.55, pp.789-795.
[25]von Estorff, O., Firuziaan, M. (2000), “Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction, Engineering Analysis With Boundary Elements, Vol.24, pp.715-725.
[26]Zaicenco, A., Alkaz, V. (2007), “Soil-Structure Interaction Effects on an Instrumented Building, Bulletin of Earthquake Engineering, Vol.5, pp.533-547..
[27]Ucak, A., Tsopelas, P. (2008), “Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction, Journal of Structural Engineering, ASCE, Vol.134, pp.1154-1164.
[28]Lu, C.W., Oka, F., Zhang, F. (2008), “Analysis of Soil-Pile-Structure Interaction in a Two-Layer Ground During Earthquakes Considering Liquefaction, International Journal for Numerical and Analytical Methods in Geomechanics, ASCE, Vol.32, pp.863-895.
[29]Masoumi, H.R., Degrande, G. (2008), “Numerical Modeling of Free Field Vibrations Due to Pile Driving Using a Dynamic Soil-Structure Interaction Formulation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.32, pp.863-895.
[30]Lin, Y.Y., Miranda, E. (2008), “Kinematic Soil-Structure Interaction Effects on Maximum Inelastic Displacement Demands of SDOF Systems, Bulletin of Earthquake Engineering, Vol.6, pp.241-259.
[31]Nakamura, N. (2009), “Nonlinear Response Analyses of a Soil–Structure Interaction System Using Transformed Energy Transmitting Boundary in the Time Domain, Soil Dynamics and Earthquake Engineering, Vol.29, pp.799-808.
[32]Lin, J.L., Tsai, K.C., Miranda, E. (2009), “Seismic History Analysis of Asymmetric Buildings with Soil–Structure Interaction, Journal of Structural Engineering, ASCE, Vol.135, pp.101-112.
[33]Grange, S., Kotronis, P., Mazars, J. (2009), “A Macro-Element to Simulate Dynamic Soil-Structure Interaction, Engineering Structures, Vol.31, pp.3034-3046.
[34]Jeremic, B., Jie, G.Z., Preisig, M., Tafazzoli, N. (2009), “Time Domain Simulation of Soil-Foundation-Structure Interaction in Non-Uniform Soils, Earthquake Engineering & Structural Dynamics, Vol.38, pp.699-718.
[35]Lin, C.C., Chang, C.C., Wang, J.F. (2010), “Active Control of Irregular Buildings Considering Soil-Structure Interaction Effects, Soil Dynamics and Earthquake Engineering, Vol.30, pp.98-109.
[36]Carbonari, S., Dezi, F., Leoni, G. (2011), “Linear Soil-Structure Interaction of Coupled Wall-Frame Structures on Pile Foundations, Soil Dynamics and Earthquake Engineering, Vol.31, pp.1296-1309.
[37]Wang, Q., Wang, J.T., Jin, F., Chi, F.D., Zhang, C.H. (2011), “Real-Time Dynamic Hybrid Testing for Soil-Structure Interaction Analysis, Soil Dynamics and Earthquake Engineering, Vol.31, pp.1690-1702.
[38]Pak, R.Y.S., Ashlock, J.C. (2011), “A Fundamental Dual-Zone Continuum Theory for Dynamic Soil-Structure Interaction, Earthquake Engineering & Structural Dynamics, Vol.40, pp.1011-1025.
[39]Gao, X., Ling, X.Z., Tang, L., Xu, P.J. (2011), “Soil-Pile-Bridge Structure Interaction in Liquefying Ground Using Shake Table Testing, Soil Dynamics and Earthquake Engineering, Vol.31, pp.1009-1017.
[40]Bransch, M., Lehmann, L. (2011), “Simulation of Soil-Structure-Interaction with Consideration of Elastic-Plastic Soil Behaviour, Bautechnik, Vol.88, pp.237-243.
[41]Cole H.A. (1973), “On-Line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures, NASA CR-2205.
[42] Danielson, G.C., C. Lanczos (1942), “Some Improvements in Practical Fourier Analysis and Their Application to X-Ray Scattering from Liquids, J. Franklin Inst., Vol.233, pp.365-380, 435-452.
[43]呂宏猷,「結構微振資料之模態參數識別」,國立成功大學土木工程研究所,碩士論文。
[44]陳建雲,「橋梁與土壤互制分析應用於橋梁沖刷之研究」,國立成功大學土木工程研究所,碩士論文。
[45]朱聖浩,「結構實驗講義」,國立成功大學土木工程研究所,2007年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top