# 臺灣博碩士論文加值系統

(3.236.68.118) 您好！臺灣時間：2021/07/31 20:32

:::

### 詳目顯示

:

• 被引用:3
• 點閱:307
• 評分:
• 下載:90
• 書目收藏:0
 在台灣建造的橋梁大部分都會橫跨河川，因此橋梁基礎的穩定性是一個重要的議題。當橋梁被沖垮時會造成人員的傷亡以及交通阻塞與經濟上的損失。颱風來臨時，橋梁基礎常會因為被大水沖刷而造成崩塌。因此，橋梁基礎的沖刷深度可以被應用於判斷橋梁是否有崩塌的危險。然而，要直接量測橋梁基礎的沖刷深度是困難的，原因是因為在台灣所建造的橋梁基礎通常都會在水面以下，特別是在洪水來的時候。為了克服此問題，本篇論文利用橋梁自然頻率去估計基礎的沖刷深度。首先許多不同沖刷深度以及不同土壤強度與不同基樁排列形式的橋梁模型會被建立，接著利用有限元素法處理土壤¬¬-橋梁互制之問題以求得橋梁之自然頻率，最後橋梁自然頻率與基礎沖刷深度之間的關係可以被找到並可應用於估計基樁裸露的程度。此外，本篇論文利用一個高斯的通式來擬合頻率資料的曲線，所取得的曲線擬合公式是可以被接受的並且可以用於找出橋梁自然頻率與基礎沖刷深度之間的關係。此論文也做了一個現地量測試驗，藉由量測四草大橋的頻率，利用隨機遞減法、亞伯拉罕時域法以及快速傅立葉轉換法辨識出橋梁真正的自然頻率。
 Most bridges in Taiwan are built across the river, so the stability of the bridge foundation is an important issue. As the bridge is burst, it may cause the damage for the human life, the interruption of the traffic, and the economic loss. When the typhoon invades, the bridge foundation may be scoured and cause the bridge collapse. Therefore, the bridge foundation scour depth can be applied to judge whether the bridge are in danger or not. However, it is difficult to measure the bridge foundation scour depth directly because most bridge foundations in Taiwan are under water, especially when the floods come. To overcome the problem, this thesis provides the bridge natural frequency to estimate the foundation scour depth. In the beginning, the bridge models for the various scour depths with the different soil strengths and the different style of the pile foundations are created, and the finite element method will be applied to determine the bridge natural frequency with the soil-bridge interaction problem. Then, the relationship between the bridge natural frequency and the foundation scour depth can be obtained to estimate the pile exposure level. Moreover, a general Gaussian function is applied to fit the curve of the frequency data. The formula of the curve fitting obtained in this study is acceptable to find the relationship between the bridge natural frequency and the foundation scour depth. A field experiment was performed in this thesis. By measuring the frequencies of the Sih-tsau Bridge, the random decrement method, Fast Fourier Transform method, and the Ibrahim time domain method are applied to identify the true natural frequency of the bridge.
 摘要 IAbstract II誌謝 IIIContent IVList of Tables VIIList of Figures VIIIChapter 1 Introduction 11.1 Background and purpose 11.2 Literature review 21.2.1 The research of pile foundations scouring 21.2.2 Interaction between soil and bridge structure 51.3 Brief account of research 7Chapter 2 Theory Illustration 102.1 Introduction 102.2 Random decrement method 102.3 Fast Fourier Transform theorem 122.4 Ibrahim time domain method 142.5 Relationship between the bridge natural frequency and the foundation scour depth 192.5.1 Evaluating the natural frequency of the bridge structure 202.5.2 Parallel subspace iteration method 222.6 The field experimental data applied in the theorems 23Chapter 3 The Programs and the Input files 333.1 Introduction 333.2 Programs for the finite element analysis 333.2.1 The AB program 333.2.2 The AD program 343.2.3 The AE program 343.2.4 The AN program 343.2.5 The GBRIDGE program 353.2.6 The VASJAPAN program 353.2.7 The PSEC program 353.2.8 The CHANGE program 353.3 Procedure of the finite element analysis 36Chapter 4 Analysis of the Bridge Natural Frequency and the Foundation Scour Depth 414.1 Introduction 414.2 Bridge model overview 414.3 Introduction of studied cases 424.4 Comparisons and brief conclusion 444.4.1 Comparisons 444.4.2 Brief conclusions 464.5 Curve fitting to find a formula 48Chapter 5 Conclusions and Future Works 735.1 Conclusions 735.2 Future works 75References 76Appendix I 82Appendix II 83Appendix III 85
 [1]Landers, N. (1992), “Bridge Scour Data Management, American Society of Civil Engineers.[2]Dargahi, B. (1990), “Controlling Mechanism of Local Scouring, Journal of Hydraulic Engineering, ASCE, Vol.116, pp.1197-1214.[3]Melville, B.W., Raudkivi, A.J. (1996), “Effects of Foundation Geometry on Bridge Pier Scour, Journal of Hydraulic Engineering, ASCE, Vol.122, pp.203-209.[4]Martin-Vide, J.P. (1998), “Local Scour at Piled Bridge Foundations, Journal of Hydraulic Engineering, ASCE, Vol.124, pp.439-444.[5] Dey, S. (1999), “Time-variation of Scour in the Vicinity of Circular Piers, Proceeding of the Institution of Civil Engineers-Water Maritime and Energy, ASCE, Vol.136, pp.67-75.[6]Oliveto, G., Harger, W.H. (2002), “Temporal Evolution of Clear-Water Pier and Abutment Scour, Journal of Hydraulic Engineering, ASCE, Vol.128, pp.811-120.[7]Coleman, E. (2005), “Clearwater Local Scour at Complex Piers, Journal of Hydraulic Engineering, ASCE, Vol.131, pp.330-334.[8]Raikar, R.V., Dey, S. (2005), “Scour of Gravel Beds at Bridge Piers and Abutments, Proceedings of the Institution of Civil Engineers-Water Management, Vol.158, pp.157-162.[9]Kothyari, U.C., Hager, W.H., Oliveto, G. (2007), “Generalized Approach for Clear-Water Scour at Bridge Foundation Elements, Journal of Hydraulic Engineering, ASCE, Vol.133, pp.1229-1240.[10]Firat, M. (2009), “Scour Depth Prediction at Bridge Piers by Anfis Approach, Proceedings of the Institution of Civil Engineering-Water Management, Vol.162, pp.279-288.[11]Firat, M., Gungor, M. (2009), “Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour Depth around Bridge Piers, Advances in Engineering Software, Vol.40, pp.731-737.[12]Lai, J.S., Chang, W.Y., Yen, C.L. (2009), “Maximum Local Scour Depth at Bridge Piers under Unsteady Flow, Journal of Hydraulic Engineering, ASCE, Vol.135, pp.609-614.[13]Ballio, F., Teruzzi, A., Radice, A. (2009), “Constriction Effects in Clear-Water Scour at Abutments, Journal of Hydraulic Engineering, ASCE, Vol.135, pp.140-145.[14]Yanmaz, A.M., Kose, O. (2009), “A Semi-Empirical Model for Clear-Water Scour Evolution at Bridge Abutments, Journal of Hydraulic Research, Vol.135, pp.140-145.[15]Bozkus, Z., Cesme, M. (2010), “Reduction of Scouring Depth by Using Inclined Piers, Canadian Journal of Civil Engineering, Vol.37, pp.1621-1630.[16]Harger, W.H., Unger, J. (2010), “Bridge Pier Scour under Flood Waves, Journal of Hydraulic Engineering, ASCE, Vol.136, pp.842-847.[17]Kaya, A. (2010), “Reduction of Scouring Depth by Using Inclined Piers, Computers and Geotechnics, Vol.37, pp.413-418.[18]Etemad-Shahidi, A., Ghaemi, N. (2011), “Model Tree Approach for Prediction of Pile Groups Scour Due to Waves, Ocean Engineering, Vol.38, pp.1522-1527.[19]Lu, J.Y., Shi, Z.Z., Hong, J.H., Lee, J.J., Raikar, R.V. (2011), “Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers, Journal of Hydraulic Engineering, ASCE, Vol.137, pp.45-56.[20]Sarlak, N., Tigrek, S. (2011), “Analysis of Experimental Data Sets for Local Scour Depth around Bridge Abutments Using Artificial Neural, WATER SA, Vol.37, pp.595-202.[21]Pagliara, S., Carnacina, I. (2011), “Influence of Large Woody Debris on Sediment Scour at Bridge Piers, International Journal of Sediment Research, Vol.26, pp.121-135.[22]Karami, H., Ardeshir, A., Saneie, M., Salamatian, S.A. (2012), “Prediction of Time Variation of Scour Depth around Spur Dikes Using Neural Networks, Journal of Hydroinformatics, Vol.14, pp.180-191.[23]Smith, H.A., WU, W.H., BORJA, R.I. (1994), “Structural Control Considering Soil-Structure Interaction Effects, Earthquake Engineering ＆ Structural Dynamics, Vol.23, pp.609-629.[24]Noorzaei, J., Viladkar, M.N., Godbole, P.N. (1995), “Influence of Strain-Hardening on Soil-Structure Interaction of Framed Structures, Computers ＆ Structures, Vol.55, pp.789-795.[25]von Estorff, O., Firuziaan, M. (2000), “Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction, Engineering Analysis With Boundary Elements, Vol.24, pp.715-725.[26]Zaicenco, A., Alkaz, V. (2007), “Soil-Structure Interaction Effects on an Instrumented Building, Bulletin of Earthquake Engineering, Vol.5, pp.533-547..[27]Ucak, A., Tsopelas, P. (2008), “Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction, Journal of Structural Engineering, ASCE, Vol.134, pp.1154-1164.[28]Lu, C.W., Oka, F., Zhang, F. (2008), “Analysis of Soil-Pile-Structure Interaction in a Two-Layer Ground During Earthquakes Considering Liquefaction, International Journal for Numerical and Analytical Methods in Geomechanics, ASCE, Vol.32, pp.863-895.[29]Masoumi, H.R., Degrande, G. (2008), “Numerical Modeling of Free Field Vibrations Due to Pile Driving Using a Dynamic Soil-Structure Interaction Formulation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.32, pp.863-895.[30]Lin, Y.Y., Miranda, E. (2008), “Kinematic Soil-Structure Interaction Effects on Maximum Inelastic Displacement Demands of SDOF Systems, Bulletin of Earthquake Engineering, Vol.6, pp.241-259.[31]Nakamura, N. (2009), “Nonlinear Response Analyses of a Soil–Structure Interaction System Using Transformed Energy Transmitting Boundary in the Time Domain, Soil Dynamics and Earthquake Engineering, Vol.29, pp.799-808.[32]Lin, J.L., Tsai, K.C., Miranda, E. (2009), “Seismic History Analysis of Asymmetric Buildings with Soil–Structure Interaction, Journal of Structural Engineering, ASCE, Vol.135, pp.101-112.[33]Grange, S., Kotronis, P., Mazars, J. (2009), “A Macro-Element to Simulate Dynamic Soil-Structure Interaction, Engineering Structures, Vol.31, pp.3034-3046.[34]Jeremic, B., Jie, G.Z., Preisig, M., Tafazzoli, N. (2009), “Time Domain Simulation of Soil-Foundation-Structure Interaction in Non-Uniform Soils, Earthquake Engineering ＆ Structural Dynamics, Vol.38, pp.699-718.[35]Lin, C.C., Chang, C.C., Wang, J.F. (2010), “Active Control of Irregular Buildings Considering Soil-Structure Interaction Effects, Soil Dynamics and Earthquake Engineering, Vol.30, pp.98-109.[36]Carbonari, S., Dezi, F., Leoni, G. (2011), “Linear Soil-Structure Interaction of Coupled Wall-Frame Structures on Pile Foundations, Soil Dynamics and Earthquake Engineering, Vol.31, pp.1296-1309.[37]Wang, Q., Wang, J.T., Jin, F., Chi, F.D., Zhang, C.H. (2011), “Real-Time Dynamic Hybrid Testing for Soil-Structure Interaction Analysis, Soil Dynamics and Earthquake Engineering, Vol.31, pp.1690-1702.[38]Pak, R.Y.S., Ashlock, J.C. (2011), “A Fundamental Dual-Zone Continuum Theory for Dynamic Soil-Structure Interaction, Earthquake Engineering ＆ Structural Dynamics, Vol.40, pp.1011-1025.[39]Gao, X., Ling, X.Z., Tang, L., Xu, P.J. (2011), “Soil-Pile-Bridge Structure Interaction in Liquefying Ground Using Shake Table Testing, Soil Dynamics and Earthquake Engineering, Vol.31, pp.1009-1017.[40]Bransch, M., Lehmann, L. (2011), “Simulation of Soil-Structure-Interaction with Consideration of Elastic-Plastic Soil Behaviour, Bautechnik, Vol.88, pp.237-243.[41]Cole H.A. (1973), “On-Line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures, NASA CR-2205.[42] Danielson, G.C., C. Lanczos (1942), “Some Improvements in Practical Fourier Analysis and Their Application to X-Ray Scattering from Liquids, J. Franklin Inst., Vol.233, pp.365-380, 435-452.[43]呂宏猷，「結構微振資料之模態參數識別」，國立成功大學土木工程研究所，碩士論文。[44]陳建雲，「橋梁與土壤互制分析應用於橋梁沖刷之研究」，國立成功大學土木工程研究所，碩士論文。[45]朱聖浩，「結構實驗講義」，國立成功大學土木工程研究所，2007年。
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 橋梁與土壤互制分析應用於橋梁沖刷之研究 2 結構微振資料之模態參數識別 3 橋梁基礎受沖刷之動態行為研究-以新發大橋為例 4 基礎沖刷深度對橋梁自然頻率的影響識別 5 微動量測之系統識別 6 隨機遞減法於非定常環境振動模態參數識別之應用 7 建立以降雨事件為主之橋梁基礎安全預測模式 8 改良隨機遞減法於非定常環境振動之模態參數識別研究

 無相關期刊

 1 橋梁耐震性能評估 2 橋梁與土壤互制分析應用於橋梁沖刷之研究 3 應用類神經網路於橋梁檢測之研究--以彰化縣橋梁為例 4 基礎沖刷深度對橋梁自然頻率的影響識別 5 橋梁結構模型建置與安全評估 6 橋梁結構檢測評估-以台16線林尾大橋為例 7 考量環境脆弱度之橋梁震害影響評估與風險管理之研究-以大台北橋梁為例 8 橋梁沖刷潛勢評估與簡易斷橋警示系統之建置 9 受沖刷之橋梁樁基礎側向反應行為探討 10 橋梁沖刷現地模擬與動力試驗 11 橋梁基礎保護工法研究與探討 12 橋樑受地震作用下之分析探討 13 人工智慧方法於圓柱型橋墩局部沖刷深度推估之研究 14 應用調適性神經模糊推論系統於氣體絕緣開關之局部放電圖譜分類研究 15 利用基因規劃法之台灣股市交易預測

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室