跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊書豪
研究生(外文):Shu-HaoYang
論文名稱:鋁合金三明治蜂巢結構之衝擊動態響應分析
論文名稱(外文):Dynamic Impact Analysis of Honeycomb Sandwich Structures Made of Aluminum Alloy
指導教授:胡宣德
指導教授(外文):Hsuan-Teh Hu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:203
中文關鍵詞:三明治蜂巢結構爆炸荷載衝擊行為ABAQUS
外文關鍵詞:Honeycomb sandwich structuresExplosive loadsImpact loadsABAQUS
相關次數:
  • 被引用被引用:8
  • 點閱點閱:672
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
面對軍事攻擊與恐怖攻擊之威脅,對於結構物之抗衝擊與抗爆震之能力提升為目前之研究重點,而國內現今對於蜂巢結構之研究,主要發展於靜態行為之研究,本研究提供動態力學之研究模型,以探討蜂巢結構受到子彈衝擊及爆炸壓力作用下之破壞模式。
由於三明治結構之有限元素模擬分析,以往的研究方式將結構部分都考慮為完美接合,這樣的考慮方式所求得之蜂巢強度較實際值高,因此本研究將利用有限元素軟體ABAQUS建立完整蜂巢結構模型,去描述三明治結構之脫層現象,利用此方式所模擬出之結果較符合真實狀況。
藉由模擬在三明治蜂巢結構實驗架構下,驗證有限元素分析與實驗之差別,並據此分析模型研究蜂巢結構之幾何參數對於抗衝擊性能之影響,以瞭解鋁合金蜂巢結構板之動態響應。
針對不同形狀之蜂巢結構,在具有相同相對密度的情況下,方型蜂巢結構所呈現之吸能與抗撞能力均為最佳,而孔徑大小對於蜂巢結構之影響,由分析結果而言,孔徑較小之蜂巢結構能夠提供較佳的吸能效果,而且以方型蜂巢結構所成長之比例最高,由此可知對於蜂巢結構而言,使用正方型蜂巢結構所展現的能力最好。
Faced with the threat of military and terrorist attacks, it is increasingly necessary and in fact required to make a great progress in the strength of structures. Nowadays, the study of the honeycomb sandwich structure focus on the static mechanics. In this study will use the nonlinear finite element software ABAQUS to build a dynamic model of the honeycomb sandwich structure.
To simulate the sandwich structures using the FEM had thought about perfect bonded in the past. However, in this way to simulate the model will high estimate the strength of the sandwich structure. In order to fit the real situation, the analysis of delamination and fracture must be considered in ABAQUS to build a complete model.
The result of the FEM analysis will compare with the experiment of the sandwich structure to test and verify. Accordingly the geometric parameters of the honeycomb structure analysis model for the effect of the impact resistance to understand the dynamic response of aluminum honeycomb structures.
For different shapes of the honeycomb structure in the case with the same relative density, the square honeycomb structure showing the energy absorption and anti-collision capabilities are the best. For the effect of pore size, the results show that pore size of the honeycomb structure smaller can provide better energy absorption.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 viii
表錄 xiv
符號說明 xvi
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 蜂巢結構機械性質 3
1.2.2 蜂巢結構之靜態與動態行為實驗 4
1.2.3 有限元素法應用於蜂巢結構板之分析 5
1.3 研究方法與目的 10
1.4 論文架構 10
第2章 三明治蜂巢結構之介紹 11
2.1 蜂巢材料之介紹 11
2.1.1 多孔細胞型材料(cellular materials) 11
2.1.2 三明治蜂巢結構之幾何架構 13
2.1.3 蜂巢結構之特性[33] 15
2.1.4 蜂巢結構之製造[34] 17
2.1.5 蜂巢結構之種類 18
2.2 蜂巢結構之機械性質 20
2.2.1 蜂巢材料之相對密度 20
2.2.2 蜂巢結構之機械性質 26
第3章 衝擊與爆炸壓力波效應作用之損傷反應 33
3.1 衝擊現象之分類與影響 33
3.2 爆炸壓力波之理論與經驗公式 34
3.2.1 爆炸壓力波之傳遞 34
3.2.2 爆炸壓力波之經驗公式 37
3.2.3 爆炸壓力波之數值模擬 42
3.3 材料損傷參數之定義[45] 44
3.3.1 韌性損傷 45
3.3.2 剪切損傷 46
3.3.3 MSFLD損傷 50
3.3.4 ABAQUS材料損傷參數 51
第4章 鋁合金三明治蜂巢結構靜態與動態衝擊試驗 54
4.1 試驗目的 54
4.2 試驗儀器設備 54
4.2.1 MTS819高速動態試驗機 54
4.2.2 高精度雷射位移感測器 56
4.2.3 資料擷取系統 56
4.3 實驗試體與材料 57
4.3.1 衝擊彈頭 57
4.3.2 鋁合金蜂巢板 57
4.4 試驗配置與操作流程 58
4.4.1 應變計黏貼流程 58
4.4.2 實驗配置 59
4.4.3 試驗資料輸入設定 61
4.4.4 試體名稱設定 61
4.4.5 操作流程 62
4.4.6 試驗注意事項 62
4.5 試驗數據之動態響應討論 64
4.5.1 線性濾波器的基本介紹[50, 51] 64
4.5.2 孔徑3mm試體在不同速度作用下之動態響應 76
4.5.3 孔徑3mm試體在不同彈頭型式作用下之動態響應 81
4.5.4 不同孔徑試體在相同彈頭作用下之動態響應 87
4.5.5 結論 91
第5章 三明治蜂巢結構面外之動態衝擊模擬分析 93
5.1 有限元素分析 93
5.1.1 衝擊現象之有限元素分析理論 94
5.1.2 ABAQUS隱式求解器 94
5.1.3 ABAQUS顯式求解器 96
5.1.4 顯式與隱式求解器之比較 98
5.2 鋁合金三明治蜂巢結構試驗模型 99
5.2.1 材料參數之設定 99
5.2.2 模型幾何設定 100
5.2.3 接觸條件設定 103
5.2.4 試驗結果與模擬之驗證 113
5.3 不同蜂巢形式於衝擊載重作用之動態模擬分析 116
5.3.1 子彈衝擊作用下之動態響應 116
5.3.2 爆炸荷載作用下之動態響應 135
5.3.3 三明治蜂巢結構破壞模式 147
5.4 結論 153
第6章 結論與建議 154
6.1 結論 154
6.2 未來研究之方向與建議 155
參考文獻 157
附錄 161
ABAQUS INPUT FILE 161
[1]L. J. Gibson, and M. F. Ashby, Cellular Solid: Structure and Properties, 2nd ed., Cambridge U.K.: Cambridge University Press, 1997.
[2]R. K. Mc Farland, Jr., “Hexagonal Cell Structures under Post-buckling Axial Load, AIAA Journal, pp. 1380-1385, 1963.
[3]L. J. Gibson, M. F. Ashby, G. S. Schajer et al., “The Mechanisms of Two-dimensional Cellular Materials, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 382, pp. 25-42, 1982.
[4]J. Zhang, and M. F. Ashby, “The out-of-planeproperties of honeycombs, International Journal of Mechanical Sciences, vol. 34, no. 6, pp. 475-489, June 1992.
[5]張儀婷, “含圓形微構件蜂巢材料力學性質之數值分析, 土木工程研究所, 國立成功大學, 2006.
[6]曾竣, “蜂巢複合材料力學性質之數值分析,土木工程研究所, 國立成功大學, 2007.
[7]W. E. Warren, and A. M. Kraynik, “Linear elastic behavior of a low-density Kelvin foam with open cells, Journal of Applied Mechanics, vol. 64, pp. 787-94, 1997.
[8]諶河水, “泡沫鋁芯體夾層板的動態力學性能研究,力學與材料科學研究中心, 寧波大學, 2007.
[9]W. Goldsmith, and J. L. Sackman, “An experimental study of energy absorption in impact on sandwich plates, International Journal of Impact Engineering, vol. 12, no. 2, pp. 241-262, 1992.
[10]A. M. Roach, K. E. Evans, and N. Jones, “The penetration energy of sandwich panel elements under static and dynamic loading. Part I, Composite Structures, vol. 42, no. 2, pp. 119-134, 1998.
[11]A. M. Roach, N. Jones, and K. E. Evans, “The penetration energy of sandwich panel elements under static and dynamic loading. Part II, Composite Structures, vol. 42, no. 2, pp. 135-152, 1998.
[12]R. Ferri, and B. V. Sankar, “A Comparative Study on the Impact Resistance of Composite Laminates and Sandwich Panels, Journal of Thermoplastic Composite Materials, vol. 10, no. 4, pp. 304-315, 1997.
[13]M. Doyoyo, and D. Mohr, “Microstructuralresponse of aluminum honeycomb to combinedout-of-plane loading, Mechanics of Materials, vol. 35, no. 9, pp. 865-876, September 2003.
[14]A.-J. Wang, and D. L. McDowell, “Yield Surfaces of Various Periodic Metal Honeycombs at Intermediate Relative Density International Journal of Plasticity, vol. 21, no. 2, pp. 285-320, February 2005.
[15]J. P. Dear, H. Lee, and S. A. Brown, “Impact damage processes in composite sheet and sandwich honeycomb materials, International Journal of Impact Engineering, vol. 32, no. 1-4, pp. 130-154, Dec, 2005.
[16]W. H. Hou, F. Zhu, G. X. Lu et al., “Ballistic impact experiments of metallic sandwich panels with aluminium foam core, International Journal of Impact Engineering, vol. 37, no. 10, pp. 1045-1055, Oct, 2010.
[17]M. Jackson, and A. Shukla, “Performance of sandwich composites subjected to sequential impact and air blast loading, Composites Part B-Engineering, vol. 42, no. 2, pp. 155-166, Mar, 2011.
[18]劉孝偉, “複合三明治平板黏彈性分析,機械工程研究所, 國立中正大學, 2003.
[19]E. W. Andrews, and N. A. Moussa, “Failure mode maps for composite sandwich panels subjected to air blast loading, International Journal of Impact Engineering, vol. 36, no. 3, pp. 418-425, Mar, 2009.
[20]V. L. Tagarielli, V. S. Deshpande, and N. A. Fleck, “Prediction of the dynamic response of composite sandwich beams under shock loading, International Journal of Impact Engineering, vol. 37, no. 7, pp. 854-864, Jul, 2010.
[21]S. A. Berggren, D. Lukkassen, A. Meidell et al., “On stiffness properties of square honeycombs and other unidirectional composites, Composites Part B: Engineering, vol. 32, no. 6, pp. 503-511, 2001.
[22]D. H. Pahr, and F. G. Rammerstorfer, “Buckling of Honeycomb Sandwiches: Periodic Finite Element Considerations, CMES, vol. 12, no. 3, pp. 229-241, 2006.
[23]M. Yamashita, and M. Gotoh, “Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment, International Journal of Impact Engineering, vol. 32, no. 1–4, pp. 618-630, 2005.
[24]M. Q. Nguyen, S. S. Jacombs, R. S. Thomson et al., “Simulation of impact on sandwich structures, Composite Structures, vol. 67, no. 2, pp. 217-227, Feb, 2005.
[25]R. K. Oruganti, and A. K. Ghosh, “FEM analysis of transverse creep in honeycomb structures, Acta Materialia, vol. 56, no. 4, pp. 726-735, 2008.
[26]B. L. Buitrago, C. Santiuste, S. Sanchez-Saez et al., “Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact, Composite Structures, vol. 92, no. 9, pp. 2090-2096, Aug, 2010.
[27]B. P. Russell, T. Liu, N. A. Fleck et al., “The soft impact of composite sandwich beams with a square-honeycomb core, International Journal of Impact Engineering, pp. 1-17, 2011.
[28]陳冠儒, “船用鋼材三明治結構之抗撞與防震特性研究,工程科學及海洋工程學研究所, 臺灣大學, 2008.
[29]鄭貴華, “金屬三明治結構之水下爆震,工程科學及海洋工程學研究所, 臺灣大學, 2007.
[30]王喬瑩, “鋁合金蜂窩板衝擊行為之模擬與分析,機電整合研究所, 國立台北科技大學, 2008.
[31]邱崇倫, “鋁合金蜂窩結構動態行為之模擬分析,製造科技研究所, 國立台北科技大學, 2009.
[32]J. Kee Paik, A. K. Thayamballi, and G. Sung Kim, “The strength characteristics of aluminum honeycomb sandwich panels, Thin-Walled Structures, vol. 35, no. 3, pp. 205-231, 1999.
[33]黃忠良, 尖端複合材料: 復漢出版社, 1999.
[34]T. Bitzer, Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing: Cambridge University Press, 1997.
[35]G. L. Rogers, Dynamics of Framed Structures, p.^pp. 80-91, New York: John Wiley & Sons, Inc., 1959.
[36]吳俊諺, “鋼筋混凝土板受爆壓作用下之破壞分析,土木工程研究所, 國立成功大學, 2010.
[37]M. A. Sadovskyi, The Mechanical Effects of Air Shock Waves from an Explosions According to the Data of Experimental Studies, Fizika Vzryva(The Physics of an Explosion), Moscow, 1952.
[38]J. Henrych, The dynamics of explosion and its use., pp. 178-181: Elsevier Scientific Publishing Company, 1979.
[39]S. Gong, Y. Lu, Z. Tu et al., “Validation study on numerical simulation of RC response to close-in blast with a fully coupled model, Structural Engineering and Mechanics, vol. 32(2), pp. 283-300, 2009.
[40]TM 5-855-1, Fundamentals of protective design for conventional weapons: U.S. Department of the Army, 1986.
[41]葉曉華, 軍事爆破工程, 北京: 解放軍出版社, 1999.
[42]戴毓修,爆炸壓力波對建物影響分析,行政院原子能委員會核能研究所:992001INER012, 2010.
[43]K. G. F., and G. K. J., Explosive Shocks in Air, pp. 44-50, New York, USA: Springer-Verlag, 1985.
[44]ABAQUS, Acoustic and shock loads, Abaqus Analysis User's Manual, Version 6.10: ABAQUS , Inc, 2010.
[45]H. Hooputra, H. Gese, H. Dell et al., “A comprehensive failure model for crashworthiness simulation of aluminium extrusions, International Journal of Crashworthiness, vol. 9, no. 5, pp. 449-464, 2004.
[46]W. L. Kolmogorov, “Spannungen Deformationen Bruch, Metallurgija, pp. 230, 1970.
[47]W. Müschenborn, and H. Sonne, “Influence of the Strain Path on the Forming Limits of Sheet Metal, Archiv furdas Eisenhüttenwesen, vol. 46, no. 9, pp. 597-602, 1975.
[48]朱浩, 朱亮, 呂先鋒 et al., “鋁合金薄壁擠壓管在準靜態和動態載荷下的有限元模似,蘭州理工大學學報, vol. 33, no. 2, pp. 34-38, 2007.
[49]ABAQUS, Progressive damage and failure, Abaqus Analysis User's Manual, Version 6.10: ABAQUS , Inc, 2010.
[50]林銀議, 信號與系統, 台北市: 五南出版社, 2004.
[51]張育涵, “新型微小化WiMAX(2~6 GHz)寬頻帶通濾波器之研製,通訊工程研究所, 國立台南大學, 2009.
[52]林思仲, “以黏著元素分析彈性層界面破壞,土木工程學系碩博士班, 國立成功大學, 2009.
[53]N. A. Fleck, and V. S. Deshpande, “The Resistance of Clamped Sandwich Beams to Shock Loading, Journal of Applied Mechanics, vol. 71, no. 3, pp. 386, March, 2004.
[54]張旭紅, “爆炸載荷作用下蜂窩鋁夾芯板動態力學行為的研究,應用力學與生物醫學工程研究所, 太原理工大學, 2009.
[55]王洪欣, “爆炸荷載作用下夾芯板的動力響應研究,工業建築, vol. 41, no. 3, pp. 23-28, 2011.
[56]K. P. Dharmasena, H. N. G. Wadley, Z. Xue et al., “Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, vol. 35, no. 9, pp. 1063-1074, 2008.
[57]S. Heimbs, and M. Pein, “Failure behaviour of honeycomb sandwich corner joints and inserts, Composite Structures, vol. 89, no. 4, pp. 575-588, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top