# 臺灣博碩士論文加值系統

(34.204.180.223) 您好！臺灣時間：2021/08/05 23:57

:::

### 詳目顯示

:

• 被引用:0
• 點閱:107
• 評分:
• 下載:8
• 書目收藏:0
 本文採用移動最小二乘法(Moving Least Square Method)來分析圓柱薄殼挫屈問題。首先基於一階剪應變形之假設導出圓柱殼結構的合應力、應變與位移的關係，進而建立圓柱殼的挫屈的控制方程式，再利用移動最小二乘法進行離散化建立數值運算程序以分析在各種荷重與邊界條件下圓柱殼之挫屈荷重與挫屈模態。 本文探討圓柱薄殼受側向圍壓、軸向壓力與扭力作用之挫屈行為。邊界條件考慮了兩邊簡支承端、兩邊固定端與一邊簡支承端一邊固定端等情況。在計算例中針對不同基底函數階數、板尺寸、厚度等因素探討對挫屈荷重與模態的影響。並用分析數據收斂結果與解析解進行比較驗證了本文方法之準確性。
 In this paper, we use the Moving Least Square Method to analysis the buckling of cylindrical shell. Base the assumption of first order shear deformation, we derived the relationship between the stress results, strains and displacements of the cylindrical shell, and then establish the governing equations of buckling of the cylindrical shell. Using the Moving Least Square Method we establish a numerical procedure to analysis the buckling load and mode shape of a cylindrical shell under various loadings and boundary conditions.In this paper, we discuss the buckling behavior of a thin cylindrical shell under lateral confining pressure, axial pressure and torque. The boundary conditions of both sides simply supported, both sides of fixed end and one side simply supported one side fixed are considered. In the examples we the accuracy of numeral results under different order of the basis function, size and thickness of plate, the results were compared with the analytical solution to validate the accuracy of this method.
 摘要 IAbstract II誌謝 III目錄 IV表目錄 VI圖目錄 VIII第一章 緒論 11.1 前言 11.2 無元素法的發展 21.3 本文架構 4第二章 圓柱薄殼挫屈分析 62.1 控制方程式 62.2 邊界條件 122.3 圓柱薄殼解析解 12第三章 移動最小二乘法之推導 15第四章 數值算例 244.1 兩邊簡支承薄殼圓柱受載重 254.1.1 圍壓作用 254.1.2 軸壓作用 264.1.3 扭力作用 274.2 兩邊固定薄殼圓柱受載重 284.3 一邊簡支承一邊固定薄殼圓柱受載重 29第五章 結論 30文獻 32
 [1] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, Vol.8, pp.1013-1024, 1977.[2] R. A.Gingold and J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Aociety, Vol.181, pp.375-389, 1977[3] W. K. Liu, S. Jun and Y. F. Zhang, “Reproducing kernel particle method, International Journal for Mumerical Method in Fluids, Vol.20, pp.1081-1106, 1995[4] J. S. Chen, C. Pan, C. T. Wu and W. K. Liu, “Reproducing kernel particle method for large deformation analysis of nonlinear structures, Computer Method in Applied Mechanics and Engineering, Vol.139, pp.195-227, 1996[5] B. Nayroles, G. Touzot ＆ P. Villon, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element, Computational Mechanics, Vol.10, pp.307-318, 1992[6] T. Belytschko, Y. Y. Lu ＆ L. Gu,“Element-Free Galerkin Methods, International Journal for Numerical Methods in Engineering, Vol.37, pp.229-256, 1994[7] T. Liszka and J. Orkist, “The finite difference method at arbitrary irregular grids and its applications in applied mechanics, Computers and Structures, Vol.11, pp.83-95, 1980[8] S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin(MLPG) approach to nonlinear problem in computation modeling and simulation, Computational Modeling Simulation Engineering, Vol.3, pp.187-196,1998[9] S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin(MLPG) approach in computayional mechanics, Computational mechanics, Vol.22, pp.117-127,1998[10] Y. T. Gu and G. R. Liu,“A boundary point interpolation method for stress analysis of solids, Computational mechanics, Vol.28, pp.47-54,2002[11] 盛若磐，「元素釋放法積分法則與權函數之改良」，近代工程計算論壇論文集，國立中央大學土木系，2000[12] Y. M. Wang, S. M. Chen ＆ C. P. Wu,“A Meshless Collocation Method Basedon the Differential Reproducing Kernel Interpolation, Computational Mechnaics, Vol.45, pp.585-606,2010[13] S. W.Yang, Y. M. Wang, C. P. Wu ＆ H. T. Hu, “A Meshless Collocation method Based on the Differential Reproducing Kernel Approximation, Computer Modeling Engineering ＆ Sciences, Vol.60, pp.1-39, 2010[14] S. M. Chen, C. P. Wu ＆ Y. M. Wang, “A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plates, Computational Mechanics, Vol.47, pp.425-453, 2011[15] Wilhelm Flügge,“Stresses in shells, Springer-Verlag, New York , 1973[16] 阮智祺，「微分再生核近似法於圓柱殼彈性挫屈之分析」，國立成功大學土木研究所碩士論文，2004[17] Y. H. Wang, W. D. Li, L. G. Tham, P. K. K. Lee and Z. Q. Yue,“Parametric Study for an Efficient Meshless Method in Vibration Analysis, Journal of Sound and Vibration, Vol.255(2), pp.261-279, 2002[18] G. R. Liu and Y. T. Gu,“A Local Radial Point Interpolation Method(LRPIM) for Free Vibration Analyses of 2-D Solids, Journal of Sound and Vibration, Vol.246(1), pp.29-46, 2001[19] Y. T. Gu and G. R. Liu,“A Meshless Local Petrov-Galerkin(MLPG) Method for Free and Forced Vibration Analyses for Solids, Computational Mechanics, Vol.27, pp.188-198, 2001
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 微分再生核近似法於圓柱殼彈性挫屈之分析 2 複合圓柱層殼挫屈問題之漸近解析解 3 應用移動最小二乘法於圓柱體薄殼大變形分析 4 圓柱薄殼受撞擊之幾何上的非線性分析

 無相關期刊

 1 The Impact of Aesthetics Website Design and Users’ Cognitive Maps on Website Effectiveness 2 受束制之移動最小二乘法在Mindlin平板分析之應用 3 受束制之移動最小二乘法在二維彈性力學問題上之應用 4 受束制之移動最小二乘法在古典板上之應用 5 電影作品《小偷》創作論述 6 「指甲」動畫作品創作論述 7 跨越文化：Fiona Tan的作品 8 服務學習課程評鑑之研究—以國立臺北藝術大學師資生為例 9 舞蹈編創知識初探：以台灣現代舞之編創教學為例 10 「感知空間/身體閱讀」-從劇場製作《陰道場所》與電影製作《普羅米修斯計畫》舞台空間設計做為自我檢視與覺知的過程 11 挑戰絕對值 12 由舞創跨越文化邊界 13 《到底在哪條路上》 14 哈元章之京劇老生初探 15 新舞臺對表演藝術團隊服務品質之建構與執行

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室