跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李鎮宏
研究生(外文):Chen-HungLee
論文名稱:鋼構建築梁柱接頭火害行為之研究
論文名稱(外文):A Study on Structural Behaviors of Steel Building Beam-to-Column Connections in Fire
指導教授:鍾興陽
指導教授(外文):Hsin-Yang Chung
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:262
中文關鍵詞:火災模擬梁柱抗彎矩接頭火害實驗火害-結構部分耦合分析
外文關鍵詞:Fire SimulationBeam-Column Moment ConnectionsFire TestThe Sequentially Coupled Fire-Structure Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文進行一系列有關鋼結構梁柱抗彎接頭在火害下之研究,藉以探討四種不同梁柱接頭試體,於ISO-834標準升溫曲線下進行定載加溫耐火實驗,研究結果顯示:側板補強彎矩接頭之臨界破壞溫度較高於其他三種不同形式之梁柱接頭。本研究亦發展一種火害-結構部分耦合分析方法,可用以建立火災模擬與結構分析間之熱邊界條件,其主要係以火災動力分析建構火場並將其數值模擬所得之結構梁柱系統邊界溫度歷時,以牆溫度等參數輸出,供有限元素分析各受熱邊界上節點所需之溫度,先進行斷面熱傳分析後,再進行結構分析。分析結果驗證包括爐內氣場溫度、試體表面溫度與梁柱次構架之變形量,經與實驗數據結果相比對,顯示本文之熱傳與結構數值分析與實驗結果趨勢一致,可有效分析火害高溫下鋼結構之大變形行為。此外,本文亦針對單一居室發生火災之相關案例進行火災數值模擬分析,經與相關單一居室火災實驗結果比對後發現:數值模擬所得之居室內火場溫度分布與結構構件受熱表面溫度成長歷時與實驗值之發展趨勢相似,證明本文所建立之火災數值模擬分析模式之正確性,此火災數值模擬模式亦擴展至單層多跨多間建築居室之火害-結構部分耦合分析中,而考量不同火源位置與居室通風因子所建構之單層多跨多間建築居室數值分析模型,更說明結合火場數值模擬與有限元素分析進行火災-結構部分耦合分析之可行性。
This research presented a series of tests for steel beam-to-column moment connections in fires. Four full-scale beam-to-column moment connection specimens were tested at elevated temperatures according to the standard ISO-834 fire. The test results showed that the critical temperature of the side-plate strengthened moment connection was higher than the other three types of the beam-to-column connections. This dissertation also developed a sequentially coupled fire-structure analysis model to assess the boundary conditions between the fire simulation and structural analysis. “Wall Temperatures” obtained from FDS were used as the parameter for fire exposure on structural elements. Data transfer between the computational fluid dynamics fire model and the finite element thermal and structural model was established. The certifications of simulation results included gas temperatures in the furnace, solid surface temperatures on the specimens and deformation of the beam-column sub frames. Through the comparison with the exact test results, it has shown that the analysis model gives relatively close simulation results; thus, this proved that the sequentially coupled fire-structure analysis model could efficiently analyze the large deformation behaviors for steel structures at high temperatures. Besides, this dissertation also performed numerical fire simulation analysis for the case studies of single-compartment on fire. The numerical simulation results agree well with the related single-compartment fire experiment results in the compartment temperature distribution and the surface temperature distribution of structural components. This proves the accuracy of the developed numerical fire simulation analysis model. This model also extended to the application in the sequentially coupled fire-structure analysis for the single-story, multiple-bay and multiple-room compartment on fire. The further discussions of different fire ignition locations and opening sizes in the single-level, multiple-bay and multiple-room compartment model demonstrates the feasibility of the sequentially coupled fire-structure analysis which combines the numerical fire simulation and finite-element analysis.
摘要………………………………………………………………………Ⅰ
ABSTRACT………………………………………………………………Ⅱ
誌謝………………………………………………………………………Ⅲ
目錄………………………………………………………………………Ⅴ
表目錄……………………………………………………………………Ⅶ
圖目錄……………………………………………………………………Ⅸ
符號表……………………………………………………………………XV
第一章 緒論………………………………………………………………1
1.1研究動機……………………………………………………………………………1
1.2文獻回顧……………………………………………………………………………3
1.3研究目的與方法……………………………………………………………………9
1.4論文內容與架構……………………………………………………………………10
第二章 梁柱次構架火害實驗規劃………………………………………15
2.1前言…………………………………………………………………………………15
2.2試體鋼材性質與銲接………………………………………………………………17
2.3梁柱接頭試體製作、儀器設備與試驗流程………………………………………21
2.4側板補強接頭設計…………………………………………………………………30
2.5圓弧切削接頭設計…………………………………………………………………32
2.6梯度切削接頭設計…………………………………………………………………33
2.7小結…………………………………………………………………………………35
第三章 鋼結構梁柱接頭火害實驗結果 ………………………………67
3.1前言…………………………………………………………………………………67
3.2 傳統托梁彎矩接頭高溫試驗結果(試驗A) ……………………………………69
3.3側板補強彎矩接頭高溫試驗結果(試驗B)………………………………………72
3.4圓弧切削彎矩接頭高溫試驗結果(試驗C) ………………………………………74
3.5梯度切削彎矩接頭高溫試驗結果(試驗D)………………………………………75
3.6整體實驗結果比對…………………………………………………………………77
3.7小結………………………………………………………………………………79
第四章 梁柱接頭火害分析與驗證……………………………………137
4.1火場模擬分析……………………………………………………………………137
4.2 ABAQUS數值分析………………………………………………………………140
4.3火害-結構部份耦合數值分析……………………………………………………147
4.4氣場溫度數值模擬與驗證………………………………………………………149
4.5試體表面溫度數值模擬與驗證…………………………………………………151
4.6臨界破壞溫度數值模擬與驗證…………………………………………………154
4.7小結………………………………………………………………………………156
第五章 居室火災實驗與結構行為分析………………………………195
5.1網格靈敏度分析…………………………………………………………………195
5.2火災行為案例驗證………………………………………………………………196
5.3單一居室火害數值分析…………………………………………………………199
5.4單層多跨建築之數值分析………………………………………………………204
5.5小結………………………………………………………………………………208
第六章 結論與建議……………………………………………………243
6.1結論………………………………………………………………………………243
6.2建議………………………………………………………………………………246
參考文獻…………………………………………………………………247
附錄………………………………………………………………………255
A. FDS程式中燃燒物件性狀參數設定……………………………………………255
B. Fire-Structural Analysis Program……………………………………………… 259

[1] Lawson, R.M., “Fire Engineering Design of Steel and Composite Buildings. J Const Steel Res, Vol. 57, pp. 1233-47, 2001.
[2] Sakumoto, Y., Yamaguchi, T., Ohashi, M., Saito, H., “High-Temperature Properties of Fire-Resistant Steel for Buildings. J Struct Engrg , Vol. 118, pp. 392-407, 1992.
[3] Kelly, F.S., Sha, W., “A Comparison of the Mechanical Properties of Fire-Resistant and S275 Structural Steels. J Const. Steel Res., Vol. 50, pp.223-233, 1999.
[4] Wang, Y.C., “ An Analysis of the Global Structural Behaviour of the Cardington Steel-Framed Building During the Two BRE Fire Tests. Engineering Structures, Vol 22, pp401-412, 2000.
[5] NIST. Final Report on the Collapse of the World Trade Center Towers. Report NIST NCSTAR 1, National Institute of Standards and Technology, Gaithersburg Maryland (USA); 2005.
[6] FEMA. World Trade Center Building Performance Study: Data Collection, Preliminary Observations, and Recommendations, FEMA-403. Washington, DC (USA): Federal Emergency Management Agency; 2002.
[7] Newman, G.M., Robinson, J.T., Bailey, C.G., “Fire Safety Design: A New Approach to Multi-Storey Steel Framed Buildings., Ascot Berkshire (UK): SCI Publication, pp.288; 2000.
[8] Leston-Jones, L.C., Lennon, T., Plank, R.J., Burgess, I.W., “Elevated Temperature Moment-Rotation Tests on Steelwork Connections. Proc. Inst. Civ. Eng. Struct. Bldgs , Vol. 122, pp.410-419, 1997.
[9] Al-Jabri, K.S., Lennon, T., Burgess, I.W., Plank, R.J., “Behaviour of Steel and Composite Beam-Column Connections in Fire. J Const. Steel Res., Vol. 46, pp.1-3, 1998.
[10] Wang, W.Y., Li, G.Q., Dong, Y.L., “Experimental Study and Spring-Component Modelling of Extended End-Plate Joints in Fire. J Const. Steel Res., Vol. 63, pp.1127-1137, 2007.
[11] Ding, J., Wang, Y.C., “Experimental Study of Structural Fire Behaviour of Steel Beam to Concrete Filled Tubular Column Assemblies with Different Types of Joints. Eng. Struct. , Vol. 29, pp. 3485-3502, 2007.
[12] Qian, Z.H., Tan, K.H., Burgess, I.W., “Behavior of Steel Beam-to-Column Joints at Elevated Temperature: Experimental Investigation. J Struct. Eng. ,Vol. 134, pp.713-726, 2008.
[13] Yu. H., Burgess, I.W., Davison, J.B., Plank, R.J., “Experimental Investigation of the Behaviour of Fin Plate Connections in Fire. J Const. Steel Res., Vol. 65, pp. 723-736, 2009.
[14] Mesquita, L.M.R., Piloto, P.A.G., Vaz, M.A.P., and Vila Real, P.M.M., “Experimental and Numerical Research on the Critical Temperature of Laterally Unrestrained Steel I Beams. Journal of Constructional Steel Research, Vol.61, pp.1435-1446, 2005.
[15] Al-Jabri K.S, Seibi A., and Karrech A., “Modelling of Unstiffened Flush Endplate Bolted Connections in Fire. Journal of Constructional Steel Research, Vol. 62, Issues 1-2, pp. 151-159, 2006.
[16] Sarraja, M., Burgessa, I.W., Davisona, J.B., Plank, R.J., “Finite Element Modeling of Steel Fin Plate Connections in Fire. Fire Safety Journal, Vol. 42, pp. 408-415, 2007.
[17] Mao, C.J., Chiou Y.J., “The Stiffness Estimation of Steel Semi-Rigid Beam-Column Moment Connections in Fire. Journal of Constructional Steel Research, Vol. 66, pp. 680-694, 2010.
[18] Lien, K.H., Chiou, Y. J., Wang, R.Z., Hsiao, P.A., “Vector form Intrinsic Finite Eelement Analysis of Nonlinear Behavior of Steel Structures Exposed to Fire. Engineering Structures, Vol. 32, pp. 80-92, 2010.
[19] Sanad, A.M., Lamont, S., Usmani, A.S., and Rotter, J.M., “Structural Behavior in Fire Compartment under Different Heating Regimes-Part 1 (Slab Thermal Gradients). Fire Safety Journal, Vol. 35, pp. 99-116, 2000a.
[20] Sanad, A.M., Lamont, S., Usmani, A.S., and Rotter, J.M., “Structural Behavior in Fire Compartment under Different Heating Regimes-Part 2 (Slab Mean Temperatures). Fire Safety Journal, Vol. 35, pp. 117-130, 2000b.
[21] Sanad, A. M., Rotter, J. M., Usmani, A. S.,and O’Connor, M. A., “Composite Beams in Large Buildings under Fire-Numerical Modeling and Structural Behavior. Fire Safety Journal, Vol. 35, pp. 165-188, 2000c.
[22] Lamont, S., Usmani, A. S., and Drysdale, D. D. “Heat Transfer Analysis of the Composite Slab in the Cardington Frame Fire Tests. Fire Safety Journal, Vol. 36, pp. 815-839, 2001.
[23] Gillie, M., Usmani, A.S., Rotter, J.M., O’Connor, M. A., “Modeling of Heated Composite Floor Slabs with Reference to the Cardington Experiments. Fire Safety Journal, Vol. 36, pp. 745-767, 2001.
[24] Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M. and Gillie, M., “Fundamental Principles of Structural Behavior under Thermal Effects. Fire Safety Journal, Vol. 36, pp. 721-744, 2001.
[25] Elghazouli, A. Y., and Izzuddin, B. A., “Analytical Assessment of the Structural Performance of Composite Floors Subject to Compartment Fires. Fire Safety Journal, Vol. 36, pp. 769-793, 2001.
[26] Gillie, M., Usmani, A. S., and Rotter, J. M., “A Structural Analysis of the Cardington British Steel Corner Test. Journal of Constructional Steel Research Vol. 58, pp. 427-442, 2002.
[27] Iu, C.K., Chan, S.L., Zha, X.X., “Nonlinear Pre-Fire and Post-Fire Analysis of Steel Frames. Engineering Structures, Vol. 27, pp.1689-1702, 2005.
[28] Silva, L.S., Coelho, A.G., A Ductility Model for Steel Connections. Journal of Constructional Steel Research, Vol. 57, pp. 45-70, 2001.
[29] Al-Jabri, K.S., Burgess, I.W., Plank, R.J., “Prediction of the Degradation of Connection Characteristics at Elevated Temperature. Journal of Constructional Steel Research, Vol. 60, pp.771-781, 2004.
[30] Al-Jabri K.S., “Component-Based Model of the Behaviour of Flexible End-Plate Connections at Elevated Temperatures. Composite Structures; Vol. 66, pp.215-221, 2004.
[31] Al-Jabri, K.S., Burgess, I.W., Plank, R.J., “Spring-Stiffness Model for Flexible End-Plate Bare-Steel Joints in Fire. Journal of Constructional Steel Research Vol. 61, pp.1672-1691, 2005.
[32] Al-Jabri, K.S., Burgess, I.W., Lennon, T., Plank, R.J., “Moment–Rotation– Temperature Curves for Semi-Rigid Joints. Journal of Constructional Steel Research, Vol. 61, pp. 281-303, 2005.
[33] FEMA. Recommended Seismic Design Critical for New Steel Moment-Frame Buildings, FEMA-350. Washington, DC (USA): Federal Emergency.
[34] Engelhardt, M.D., Sabol, T.A., “Reinforcing of Steel Moment Connections With Cover Pates: Benefits and Limitations. Engineering Structures, Vol. 20, pp.510-520, 1998.
[35] Lee, C.H., Uang, C.M., “Analytical Modeling and Seismic Design of Steel Moment Connections With Welded Straigth Haunch. J. Structural Engineering, Vol. 127, pp.1028-1035, 2001.
[36] Chen, C.C, Lin, C.C., Tsai, C.L., “Evaluation of Reinforced Connections Between Steel Beams and Box Column. Engineering Structures, Vol. 26, pp. 1889-1904, 2004.
[37] Plumier, A., Baus, R., Pepin, R., Schleich, J., “Antiseismic Steel Structural Work. United States Patent., No. 5148642, 1992.
[38] Prov, E.P., Blondet, M., Stepanov, L., “Application of Dog Bones for Improvement of Seismic Behavior of Steel Connections. Report No. UCB/EERC 96/05, 1996.
[39] Engelhardt, M.D., Winnerberger, T., Zekany, A.J., and Potyraj, T.J., “Experimental Investigation Dogbone Moment Connetions. Engineering Journal, pp. 128-139, 1998.
[40] Chen, S.J., Yeh, C.H., Chu, J.M., “Ductile Steel Beam-to-Column Connections for Seismic Resistance. Journal of structural Engineering , pp.1292-99, 1996.
[41] NIST. Final Report on the Collapse of the World Trade Center Towers. Report NIST NCSTAR 1, National Institute of Standards and Technology, Gaithersburg Maryland (USA); 2005.
[42] ISO-834-1. Fire-Resistance Tests-Elements of Building Construction-Part 1: General Requirements.1999.
[43] Chow, W.K., “One the Cabin Fire Safety Design Concept in the New Hong Kong Airport Terminal Buildings. Journal of Fire Science, Vol.15, pp. 404-423, 1997.
[44] McGrattan, K.B., Baum, H.R., Rehm, R.G., “Large Eddy Simulations of Smoke Movement. Fire Safety Journal, Vol.30, pp.161-178, 1998.
[45] Wang, Z., Jia, F., Galea, E.R., Patel, M.K., Ewer, J., “Simulating One of the CIB W14 Round Robin Test Cases Using the SMARTFIRE Fire Field Model. Fire Safety Journal, Vol.36, pp. 661–667, 2001.
[46] Ghojel, J.I., “A New Approach to Modeling Heat Transfer in Compartment Fires. Fire Safety Journal 1998; 31:227-237.
[47] Kuldeep, P., Howard, R.B., “Coupled Fire Dynamics and Thermal Response of Complex Building Structures. Proceedings of the Combustion Institute, Vol. 30, pp.2255-2262, 2005.
[48] Wickstrom, U., Duthinh, D., McGrattan, K., “Adiabatic Surface Temperature for Calculating Heat Transfer to Fires Exposed Structures. 11th International Conference on Fire Science and Engineering Interflam 2007, London.
[49] Duthinh, D., McGrattan, K., Khaskia, A., “Recent Advances in Analysis of Structures During Fires. Fire Safety Journal, Vol. 43, pp.161–167, 2008.
[50] Kodur, V.K.R., Dwaikat, M.B., Raut, N., “Macroscopic FE Model for Tracingthe Fire Response of Reinforced Concrete Structures. Engineering Structures, Vol. 31, pp.2368-2379, 2009.
[51] McGrattan, K., Klein, B., Hostikka, S., Floyd, J., “Fire Dynamics Simulator (Version 5) User’s Guide., NIST, 2008.
[52] Chung, H.Y. , Lee, C.H., Su, W.J., Lin, R.Z., “Application of Fire-Resistant Steel to Beam-to-Column Moment Connections at Elevated Temperatures. Journal of Constructional Steel Research , Vol. 66, pp. 289-303, 2010.
[53] Lee, C.H., Chiou, Y.J., Chung, H.Y., Chen, C.J., “Numerical Modeling of the Fire–Structure Behavior of Steel Beam-to-Column Connections. Journal of Constructional Steel Research ,Vol. 67, pp.1386-1400, 2011.
[54] European Committee for Standardization (CEN). Design of Steel Structures: Part 1.2: General rules - Structural Fire Design. EN 1993-1-2, Eurocode 3; 1995.
[55] Kwon, J., “Evaluation of FDS V.4: Upward Flame Spread. Worcester Polytechnic Institute Press, MA, USA, 2006.
[56] Chen, C.J. , Hsieh, W.D. , Hu, W.C. , Lai, C.M. , Lin, T.H., Experimental Investigation and Numerical Simulation of a Furnished Office Fire, Building and Environment, Vol.45, pp.2735-42, 2010.
[57] Ma, T.G., Quintiere, J.G., “Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations. Fire Safety Journal; Vol. 38, pp.467-92, 2003.
[58] Gillie, M., The Behavior of Steel-Framed Composite Structures in Fire Conditions., Ph.D. thesis, University of Edinburgh, 2000.
[59] Walton, W.D., Thomas, P.H., “Estimating Temperatures in Compartment Fires. SFPE Handbook Fire Protection Engineering, Society of Fire Protection Engineers, 1995.
[60] Harada, K., Ohmiya, Y., Natori, A., Nakamichi, A., “Technical Basis on Structural Fire Resistance Design in Building Standards Law of Japan. Fire and Material, Vol. 28, pp. 323-341, 2004.
[61] Feasey, R., Buchanan, A.H., “Post-flashover Fires for Structural Design. Fire Safety Journal, Vol. 37, pp.83–105, 2006.
[62] ABAQUS HTML Documentation, “User’s Manual. Dassault Systèmes Simulia Corp., Providence, RI, USA.
[63] MATLAB, “MATLAB Programming Fundmentals. MathWorks, MA, USA.
[64] 李智民,「H型鋼柱接擴翼鋼梁抗彎接頭之耐震行為與設計」,碩士論文,國立交通大學土木工程學系,新竹,2006。
[65] 饒智凱,「鋼骨梁柱翼內側加勁補強接頭之耐震行為研究」,碩士論文國立交通大學土木工程學系,新竹,2007。
[66] 陳紀勛,「鋼柱與鋼梁腹板開孔位處塑性區梁柱接頭之耐震行為」,碩士論文,國立交通大學土木工程學系,新竹,2008。
[67] 陳誠直、陳宣維、鐘明達,「梁翼圓弧切削鋼骨梁柱接頭之耐震行為」,中國土木水利工程學刊,第15卷第一期,第15-19頁,2003。
[68] 中國國家標準CNS總號12514,「建築物構造部分耐火試驗法」,經濟部中央標準局,台灣,2009。
[69] 黃雄義,「FDS預測ISO-9705房間試驗火場情境之可行性研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程所,高雄,2005。
[70] 林誠興,王士承,「數值模擬技術應用於建築物火災情境重現之探討」,工業安全科技,第63期,第46-52頁,2007。
[71] 徐瑞祥,林誠興,黃彰斌,「鋼筋混凝土樑受火害後之剪力強度數值模擬,建築學報,第48期,第 59-73頁,2004。
[72] 中國國家標準CNS總號13812,「建築結構用軋鋼料」,經濟部中央標準局,台灣,2011。
[73] 中國國家標準CNS總號2947,「銲接結構用軋鋼料」,經濟部中央標準局,台灣,2011。
[74] 蘇文傑,「實尺寸H型梁-箱型柱彎矩接頭之火害實驗研究」,碩士論文國立成功大學土木工程學系,台南,2008。
[75] 方朝俊,「火害對耐火鋼構件銲接及栓接行為影響」,碩士論文,國立台灣科技大學營建工程學系,台北,2000。
[76] 何明錦,「建築物構造防火性能驗證技術手冊」,內政部建築研究所,台北,2008。
[77] 吳家豪,「補強式梁柱韌性接頭高溫抗彎行為之數值模擬」,碩士論文國立成功大學土木工程學系,台南,2009。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top