跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/14 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王勁凱
研究生(外文):Jin-KaiWang
論文名稱:重力式基礎受垂直作用力下之變形分析
論文名稱(外文):Settlements of Gravity Foundations Under Vertical Loads
指導教授:陳景文陳景文引用關係郭玉樹郭玉樹引用關係
指導教授(外文):Jing-Wen ChenJing-Wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:95
中文關鍵詞:風力發電重力式基礎反覆載重沉陷量
外文關鍵詞:Wind powerGravity foundationCyclic loadingSettlement
相關次數:
  • 被引用被引用:3
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
風力發電為目前發展技術最成熟的再生能源之一,其中重力式基礎為風力發電機組普遍採用的基礎型式之一。由於風機需承受長期風力之影響,基礎若承受反覆載重,基礎沉陷將不斷增加,使土壤承載力下降,影響整體結構安全。
本研究係針對重力式基礎埋置於非凝聚性土壤時,使用修正後O’Loughlin & Lehan (2010)建議之沉陷評估法,並導入Kuo (2008)勁度衰減模型(Degradation Stiffness Model)概念,分析基礎-土壤系統承受反覆載重下之變形行為。
經由本研究之方法,配合動態平鈑載重試驗,可準確預測基礎受靜態載重和反覆載重下之沉陷量,作為設計重力式基礎時之參考。
Wind power has been most mature technology for development of renewable energy. Gravity foundations are used as foundation structures for wind turbines. It is well known that cyclic loading of foundations arises mainly from wind loads may leads to an accumulation of permanent settlement and may decrease the soil bearing capacity with the number of loading cycles.
This study is used modified Degradation stiffness model (Kuo, 2008) and introduced into modified O’Loughlin & Lehan (2010) settlement prediction method to analysis the deformation performance of gravity foundations embedded in cohesionless soils under cyclic loading.
Settlements of foundations that both under static loading and cyclic loading, can be predicted accurately through the method that developed in this study by using plate loading test as a reference as gravity foundations are designed.
摘要 I
Abstract II
誌謝 III
目錄 V
表目錄 IX
圖目錄 XI
符號 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的及方法 2
1.4 研究流程 3
第二章 文獻回顧 5
2.1 風力發電基礎型式 5
2.2 重力式基礎 6
2.3 重力式基礎破壞模式 9
2.4 淺基礎極限承載力 12
2.5 靜態作用力下之淺基礎沉陷分析方法 15
2.5.1 Terzaghi and Peck (1948) 建議之沉陷評估法 15
2.5.2 Schmertmann (1970) 建議之沉陷評估法 16
2.5.3 Berardi and Lancellotta (1991) 建議之沉陷評估法 18
2.5.4 Mayne and Poulos (1999) 建議之沉陷評估法 19
2.5.5 實驗與理論之比較 20
2.5.6 O’Loughlin and Lehan (2010)沉陷預測法 22
2.6 偏心載重下之沉陷分析方法 24
2.6.1 Prakash (1981)沉陷預測法 24
2.6.2 Georgiadis and Butterfield (1988)沉陷預測法 25
2.7 反覆載重下之非凝聚性土壤行為 27
2.8 反覆載重下重力式基礎變形 30
2.8.1 Hettler (1981)之室內試驗結果 30
2.8.2 Sawicki (1998)之室內試驗和理論 32
2.8.3 Yokohama and Miura (2003)之室內試驗 34
第三章 勁度衰減模型 37
3.1 土壤於反覆三軸作用力下之行為 37
3.2 非凝聚性土壤於反覆作用力下之永久變形量 39
3.2.1 半對數經驗公式 39
3.2.2 冪次半經驗公式 40
3.3 土壤勁度衰減模型 41
3.4 基礎-土壤系統衰減勁度模型 42
第四章 重力式基礎半經驗公式分析方法 45
4.1 模型建立 45
4.1.1 靜態載重下之沉陷量 45
4.1.2 反覆載重下之沉陷量 47
4.2 模型校正 49
4.2.1靜態作用力下模型校正 49
4.2.2反覆作用力下模型校正 54
4.3 現地試驗模擬 56
4.4 陸域風機基礎沉陷量預測 59
4.4.1 靜態載重下之沉陷預測 59
4.4.2 反覆載重下之沉陷預測 60
4.5 參數敏感度分析 61
4.6 重力式基礎沉陷預測建議步驟 63
第五章 參數分析 65
5.1 反覆載重之案例分析 65
5.1.1 靜態載重分析 65
5.1.2 反覆載重分析 67
5.2 大尺寸重力式基礎之沉陷量預測 70
5.2.1 靜態載重下之分析結果 71
5.2.2反覆載重下之分析結果 75
5.2.3 重力式基礎受靜態載重下之正規化 83
第六章 結論與建議 87
6.1 結論 87
6.2 建議 88
參考文獻 89
附錄A 基礎極限承載力(t/m2) 95

1.Addo-Abedi, F. Y. (1980). “The behavior of soils in repeated triaxial compression. Ph.D. thesis, Department of Civil of Engineering, Queen’s University, Kingston, Ontario, Canada.

2.API RP 2GEO. (2011). “Geotechnical and Foundation Design Considerations-First Edition. ISO 19901-4:2003 Adoption.

3.Baldi, G., Bellotti, R., Ghionna, V. H., Jamiolkowski, M., and Lo Presti, D. C. (1989). “Modulus of sands from CPTs and DMTs. Proc., 12th Int. Conf. of Soil Mechanics and Foundation Engineering, Balkema, Rotterdam, The Netherlands, Vol. 1, pp.165-170.

4.Barksdale, R. D. (1972). “Laboratory evaluation of rutting in base course materials. Proceedings of third International Conference on the Structural Design of Asphalt Pavements, Michigan, pp.161-174.

5.Berardi, R., and Lancellotta, R. (1991). “Stiffness of granular soil from field performance. Geotechnique, Vol. 41(1), pp.149-157.

6.Das, B. M. (2007). “Principles of Foundation Engineering. 6th ed., Thomson Canada, Ltd.

7.Das, B. M., and Sivakugan, N. (2007). “Settlements of shallow foundations on granular soil - an overview. International Journal of Geotechnical Engineering, Vol. 1(1), pp.19-29.

8.David, J. A. (2006). “Likely sensitivity of bottlenose dolphins to pile-driving noise, Water and Environment Journal, Vol. 20, pp.48-54.

9.Davidović, N., Bonić, Z., Prolović, V., Mladenović, B., and Stojić, D. (2010). “A comparative theoretical-experimental analysis of settlements of shallow foundations on granular soil, Architecture and Civil Engineering, Vol. 8(2), pp.135-143.

10.Dietrich, Th. (1977). “Experimental study of flexible piles in sand cyclically displaced at low frequency. International symposium on testing in situ of concrete structures, Budapest, pp.233-245.

11.DIN 18134. (2010). “Baugrund - Versuche und Versuchsgeräte - Plattendruckversuch. Deutsches Institut für Normung e. V. Direktlink.

12.DNV Standard, DNV-OS-J101. (2011). “Design of Offshore WindTurbine Structures.

13.De Beer, E. E. (1970). “Experimental Determination of the Shape Factors and Bearing Capacity Factors of Sand. Geotechnique, Vol. 20(4), pp. 387-411.

14.Georgiadis, M., and Butterfield R. (1988). “Displacements of footings on sand under eccentric and inclined loads. Canadian Geotechnical Journal, Vol. 25(2), pp.199-212.

15.Goldscheider, M. (1977). “Shakedown and Incremental Collapse in dry sand Bodies. Plastic and long-term effects in soils, International Conference on Dynamical Methods in Soil and Rock Mechanics, Karlsruhe, Vol. 2, pp.3-44.

16.Goldscheider, M., and Gudehus, G. (1976). “Einige bodenmechanische Probleme bei küsten-und Offshore-Bauwerken. Vorträge der Baugrundtagung 1976 in Nürnberg, pp.507-522.

17.Gotschol, A. (2002). “Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung. Ph.D. thesis, Universität Gh. Kassel, Kassel, Heft 12.

18.Güttler, U. (1984). “Beurteilung des Steifigkeits- und Nachverdichtungsverhaltens von ungebundenen Mineralstoffen. Ph.D. thesis, Ruhr-Universität, Bochum, Heft 8.

19.Hanna, A. M., and Meyerhof, G. G. (1981). “Experimental evaluation of bearing capacity of footings subjected to inclined loads. Canadian Geotechnical Journal, Vol. 18(4), pp.599-603.

20.Hansen, J. B. (1970). “A revised and extended formula for bearing capacity. Danish Geotechnical Institute, Bulletin No.28, Copenhagen.

21.Hettler, A. (1981). “Verschiebungen Starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Ph.D. thesis, Universität Fridericiana in Karlsruhe, Heft 90.

22.Hettler, A. (1987). “Schottertriaxialversuche mit statischem und zyklischem Belastungsverlauf. Eisenbahntechnische Rundschau, Vol. 36, pp.399-405.

23.Huurman, M. (1996). “Development of traffic induced permanent strain in concrete block pavements. Heron, Vol. 41(1), pp.29-52.

24.Jamiolkowski, M., Ladd, C.C., Germaine, J., and Lancellotta, R. (1985). “New developments in field and lab testing of soils. Proc., 11th Int. Conf. of Soil Mechanics and Foundation Engineering, San Francisco, Vol. 1, pp.57-154.

25.Koiter, W. T. (1960). “General theorems for elastic-plastic solids. Progress in Solid Mechanics, Vol. 1, pp.165-221.

26.Kuo, Y.-S. (2008). “On the behavior of large-diameter piles under cyclic lateral load. Ph.D. thesis, Heft 65, Leibniz Universität Hannover.

27.Kuo, Y.-S., Achmus, M. (2008). “A numerical model to simulate the performance of foundation elements under cyclic loading. Proceeding of the BGA International Conference on Foundations, Dundee, Scotland, Vol. 2, pp.1247-1258

28.Kuo, Y.-S., Achmus, M., and Abdel-Rahman, K. (2009). “Application of cyclic triaxial test results on estimation of lateral deformation of monopiles foundations. Chinese Journal of Geotechnical Engineering, Vol. 31(11), pp.1729-1734.

29.Landon Maynard, M., and Schneider, J. (2010). “Geotechnics for developing offshore renewable energy infrastructure industries in the US. 2nd Int. Symp. on Frontiers in Offshore Geotechnics (ISFOG), University of Western Australia, Perth, Western Australia, 8-10 November.

30.Lee, I. K. (1963). “Elastic Settlements of Footings with a Rough Interface. Proc. 4th New Zealand Conference on Soil Mechanics and Foundation Engineering, pp.409-412.

31.Lentz, R. W., and Baladi, G. Y. (1980). “Simplified procedure to characterize permanent strain in sand subjected to cyclic loading. International Symposium on Soils under Cyclic and Transient Loading, Swansea, pp.89-95.

32.Lentz, R. W., and Baladi, G. Y. (1981). “Prediction of Permanent Strain in Sand Subjected to Cyclic Loading. Transportation Research Record, No. 749, pp.54-58.

33.McDonald, L. M., and Raymond, G. P. (1984). “Repetitve load testing: reversal or rotation. Canadian Geotechnical Journal, Vol. 21(3), pp. 456-474.

34.Mathis, H. (2008). “Offshore foundation in concrete-Cost reduction by serial production. Tailor Made Concrete Structures, 2008, pp.169-170.

35.Mayne, P. W., and Poulos, H. G. (1999). “Approximate displacement influence factors for elastic shallow foundations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125(6), pp.453-460.

36.Melan, E. (1938). “Zur Plastizität des räumlichen Kontinuums. Ingenieurarchiv, Vol. 9, pp.116-126.

37.Meyerhof, G. C. (1963). “Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, Vol. 1(1), pp.16-26.

38.Michalowski, R. L. (1997). “An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils Found., Vol. 37(4), pp.57-64.

39.Morgan, J. R. (1966). “The Response of Granular Materials to Repeated Loading, Proceedings of the Australia Road Research Board, 3rd Conference, Sydney, Australia, pp.1178-1189.

40.Moghaddas Tafreshi, S. N., Zarei, S. E., and Soltanpour, Y. (2008). “Cyclic loading on foundation to evaluate the coefficient of elastic uniform compression of sand. The 14th World Conference on Earthquake Engineering, China.

41.O’Loughlin, C. D., and Lehane, B. M. (2010). “Nonlinear Cone Penetration Test Based Method for Predicting Footing Settlements on Sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136(3), pp.409-416.

42.Paul Smith-Pardo, J., and Bobet, A. (2007). “Behavior of Rigid Footings on Gravel under Axial Load and Moment. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133(10), pp.1203-1215.

43.Prakash, S. (1981). “Soil dynamics. McGraw-Hill, New York.

44.Robertson, P. K. and Campanella, R. G. (1983). “Interpretation of cone penetration tests: sands and clays. Canadian Geotechnical Journal, Vol. 20(4), pp.719-745.

45.Sawicki A., Świdziński W., and Zadroga B. (1998). “Settlement of shallow foundation due to cyclic vertical force. Soils and Foundations, Vol. 38(1), pp.35-43.

46.Schmertmann, J. H. (1970). “Static cone to compute static settlement over sand. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96(3), pp.1011-1043.

47.Schmertmann, J. H., Hartman, J. P., and Brown, P. R. (1978). “Improved strain influence factor diagrams. Journal of the Geotechnical Engineering Division, ASCE, Vol. 104(8), pp.1131-1135.

48.Sivakugan, N., and Johnson, K. (2004). “Settlement predictions in granular soils: a probabilistic approach. Geotechnique, Vol. 54(7), pp.499-502.

49.Terzaghi, K. (1943). “Theoretical Soil Mechanics. John Wiley & Sons, New York.

50.Terzaghi, K., and Peck, R.B. (1948). “Soil mechanics in engineering practice. 1st Edition, John Wiley & Sons, New York.

51.Terzaghi, K., Peck, R. B., and Mesri, G. (1996). “Soil Mechanics In Engineering Practice. 3rd ed., John Wiley & Sons, New York.

52.Thiel, G. (1988). “Steifigkeit und Dämpfung von wassergsättigtem Feinsand unter Erdbenbelastung. Ph.D. thesis, Ruhr-University, Bochum, Heft 14.

53.Timmerman, D. H., and Wu, T H. (1969). “Behavior of dry sands under cyclic loading. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95(4), pp.1097-1112.

54.Tsytovich N. A. (1951), “Soil mechanics, Edit. Stroitielstvo i Archiketura, Moscow. (in Russian).

55.Vesic, A. S. (1973). “Analysis of ultimate loads of shallow foundation. Journal of Geotechnical Engineering, ASCE, Vol. 99(1), pp.43-73.

56.Volund, P. (2005). “Concrete is the future for offshore foundations. Proc. of Copenhagen Offshore Wind, October 26-28. Copenhagen, DK.

57.Wichtmann, T. (2005). “Explicit accumulation model for non-cohesive soils under cyclic loading. Ph.D. thesis, Ruhr-Universität, Bochum, Heft 38.

58.Whitman, R. V., and Richart, F. E. (2005). “Design Procedures for Dynamically Loaded Foundations. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93(6), pp.169-193.

59.Yokohama, S., and Miura, S. (2003). “Lateral Flow Deformation Analysis of Sand Ground-structure Subjected to Cyclic Loading and Its Evaluation. Proc. of 13th International offshore and polar engineering conference (ISOPE), Hawaii, USA, Vol. 1, pp.61-67.

60.Yokohama, S., Miura, S., and Kawamura, S. (2002). “Deformation Behavior of Structure-Ground System Subjected to Static and Cyclic Loadings and Its Prediction. Proc. of the Japan Society of Civil Engineers, Vol. 2002(715), pp.263-275. (in Japanese)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top