跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳必王
研究生(外文):TrySuciptan
論文名稱:探討柳杉生質油作為營建工程中之生質黏著劑材料之流變行為
論文名稱(外文):Investigate the Rheological Behavior of Japanese Cedar Based Bio-Binder As Partial Replacement For Bituminous Binder
指導教授:楊士賢楊士賢引用關係
指導教授(外文):Shih-Hsien Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:105
外文關鍵詞:pyrolysis bio-oilbio-binderrheological behaviorbinder aging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ABSTRACT
There is about 90% of asphalt used in the road and airport pavement construction. The majority of asphalt used nowadays is mainly derived from fossil fuel. However, due to the decreasing amount of petroleum reserves, the price of petroleum-based asphalt has increased that leads to the increasing the cost of hot-mix asphalt pavement construction. In addition, it is also well recognized that the use of fossil fuel is the main source of producing greenhouse gases that will lead to the greenhouse effect. As the consequence, there is an urgent need to develop a more sustainable binding material from renewable resources or other alternatives resources.
The main objective of this study is to investigate the potential use of bio-oil by-product as partially replacement of bituminous based binder. Therefore, the rheological properties of bio-modified binder will be compared with petroleum based binder, AC-20, through several chemical, conventional and rheological tests.
Specific gravity of bio-modified binder is found to be higher than petroleum based binder. The chemical testing showed that addition of 25% and 50% of bio-binder significantly altered the chemical composition of conventional AC-20. The different trend of carbonyl index change of 25% and 50% implies that standard again method might not suitable for bio-binder. Bio-modified binders have higher viscosity than unmodified binder at high temperature above 60 ⁰C. However 25% and 50% bio-modified binders have less temperature susceptibility. The addition up to 25% of bio-binder did not significantly change G* for the unaged case whereas RTFO-aged bio-modified binders show higher complex modulus and also more viscous than unmodified binder. Bio-modified binders show smaller Jnr value and better recovery ability than conventional AC-20.

TABLE OF CONTENT
ABSTRACT i
ACKNOWLEDGEMENT iii
ABBREVIATIONS iv
TABLE OF CONTENT v
LIST OF FIGURE ix
LIST OF TABLE xiv
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 3
1.3 Research Objectives 3
1.4 Research Approach 3
1.5 Scope of Research 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Background of Biomass 5
2.2 Background of Bio-Oil 6
2.3 Pyrolysis Process of Bio-Oils 7
2.4 Composition And Physicochemical Properties Of Bio-Oil 10
2.4.1 Water 11
2.4.2 Oxygen 11
2.4.3 Viscosity 12
2.4.4 Acidity 13
2.4.5 Heating value 13
2.4.6 Ash 14
2.5 Chemical composition of bio-oils 14
2.6 Physical and Rheological Properties of Bio-oils 17
2.6.1 Pavement Performance Related to Rheological Properties 18
2.6.1.1 Raveling 19
2.6.1.2 Cracking 19
2.6.1.3 Rutting 21
2.6.1.4 Stripping 22
2.6.2 Viscosity as a Rheological Property 22
2.6.3 Rheological Characteristics of a Paving Binder 25
2.6.3.1 Viscoelastic Behavior 25
2.6.3.2 Master Curve 27
2.6.3.3 Master Curve Model 29
2.6.3.4 Age Hardening or Oxidation 30
2.6.3.5 Oxidation mechanism of asphalt binder 32
CHAPTER 3 EXPERIMENTAL DESIGN 34
3.1 Materials 35
3.1.1 Unmodified Binder 35
3.1.2 Bio-oil 36
3.1.3 Dehydration of Bio-Oil 36
3.2 Physical testing 38
3.2.1 Separation test 38
3.2.2 Specific Gravity Test 39
3.3 Chemical Testing 39
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 39
3.4 Conventional Test 42
3.4.1 Penetration Test 42
3.4.2 Softening Point 43
3.4.3 Ductility 44
3.5 Rheological Testing 44
3.5.1 Rotational Viscometer 44
3.5.1.1 Viscosity Temperature Susceptibility 46
3.5.2 Dynamic Shear Rheometer 46
3.5.2.1 Frequency Sweeps 49
3.5.2.2 Multiple Stress-Creep Recovery (MSCR) 50
3.6 Accelerated Aging Test (Rolling Thin Film Oven Test) 51
CHAPTER 4 RESULTS AND DISCUSSION 53
4.1 Physical Testing Results 53
4.1.1 Separation Test 53
4.1.2 Specific Gravity Test 54
4.2 Gas Chromatography/Mass Spectrometry (GC/MS) 55
4.3 Fourier Transform Infrared Spectroscopy Results 57
4.4 Conventional Testing Results 63
4.4.1 Penetration 63
4.4.2 Ring and Ball Softening Point 64
4.4.3 Ductility 65
4.5 Rheological Testing 66
4.5.1 Viscosity Testing Results 66
4.5.1.1 Unaged Case 66
4.5.1.2 RTFO- aged Case 68
4.5.2 Viscosity Temperature Susceptibility (VTS) 69
4.6 Dynamic Shear Modulus and Phase Angle 71
4.6.1 Master Curve of Complex Modulus and Phase Angle 71
4.6.2 Black Space Diagram 78
4.6.3 Complex Modulus Model 80
4.7 Multiple Stress Creep Recovery 81
CHAPTER 5 CONCLUSION AND SUGGESTION 89
REFERENCES 92
APPENDICES 96
Appendix A : Complex modulus and phase angle 96

REFERENCES
Airey, G. D., M. H. Mohammed and C. Fichter (2008). Rheological characteristics of synthetic road binders. Fuel 87(10-11): 1763-1775.

AsphaltInstitute, T. (2003). Superpave Performance Graded Asphalt Binder Specifications and Testing Superpave (SP-1&SP-2). Lexington, Kentucky.

ASTMD3381 (2010). Standard Specification for Viscosity-Graded Asphalt Cement for Use in Pavement Construction.

Barnes, H. A., J. F. Hutton and K. Walters (1989). An introduction to rheology. Amsterdam, Elsevier.

Beis, S. H., O. Onay and O. M. Kockar (2002). Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energy 2002 26(21–32).

Boateng, A. A. and C. A. Mullen (2008). Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy & Fuels 22(3): 2104-2109.

Boucher, M. E., A. Chaala and C. Roy (2000). Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 2000 19(I.5): 337-350.

Bridgwater, A. V. (2003). Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chemical Engineering Journal 91(2-3): 87-102.

Chaileux, E., G. Ramond, C. Such and C. De La Roche (2006). A mathematical-based master-curve construction method applied to complex modulus of bituminous materials. Road Materials and Pavement Design, EATA: 75-92.

Czernik, S. (1994). Storage of Biomass Pyrolysis Oils. In Proceeding of Specialist Workshop on Biomass Pyrolysis Oil Properties and Combustion, Estes Park, CO, Sept. 26-28 NREL Paper No. CP-430-7215: 67-76.

Demirbas, A. (2005). Pyrolysis of ground beech wood in irregular heating rate conditions. Journal of Analytical and Applied Pyrolysis 73(1): 39-43.

Demirbas, M. F. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy 86: S151-S161.

Demirbas, M. F. and M. Balat (2006). Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Conversion and Management 47(15-16): 2371-2381.

Dorchies, P. T. (2008). The environmental road of the future: Analysis of energy consumption and greenhouse gas emissions Transportation Association of Canada.

Fini, E. H., I. L. Al-Qadi, Z. You, B. Zada and J. Mills-Beale (2011). Partial replacement of asphalt binder with bio-binder: characterisation and modification. International Journal of Pavement Engineering: 1-8.

Garcia, P. M., X. S. Wang, J. Shen, M. J. Rhodes, F. Tian, W. Lee and C.-Z. Li (2008). Fast Pyrolysis of Oil Mallee Woody Biomass: Effect of Temperature on the Yield and Quality of Pyrolysis Products. Industrial & Engineering Chemistry Research 47(6).

Goyal, H. B., D. Seal and R. C. Saxena (2006). Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews 12: 504–517.

Hamzah, M. O. and Z. Shahadan (2011). Effects of Aging on the Physical, Rheological and Chemical Properties of Virgin Bitumen Incorporating Recovered Reclaimed Asphalt Pavement Binder. Australian Journal of Basic and Applied Sciences 5(5): 1323-1331.

Huang, Y. H. (2004). Pavement Analysis and Design. University of Kentucky, Pearson Education, Inc.

Huber, G. W. and A. Corma (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition 46(38): 7184-7201.

Ingram, L., D. Mohan, M. Bricka, P. Steele, D. Strobel, D. Crocker, B. Mitchell, J. Mohammad, K. Cantrell and C. U. Pittman J.r (2008). Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy Fuels 22(1): 614-625.

J.D., F. (1980). Viscoelastic properties of polymers. Wiley, New York.

Lamontagne, J., P. Dumas, V. Mouullet and J. Kister (2000). Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens.

Liu, M., M. A. Ferry, R. R. Davison, C. J. Glover and J. A. Bullin (1998a). Oxygen Uptake as Correlated to Carbonyl Growth in Aged Asphalts and Asphalt Corbett Fractions. Ind. & Eng. Chem. Res 37(12): 4669.

Liu, M. M., M. S. Lin, J. M. Chaffin, R. R. Davison, C. J. Glover and J. A. Bullin (1998b). Oxidation Kinetics of Asphalt Corbett Fractions and Compositional Dependence of Asphalt Oxidation. Pet. Sci. & Tech 16(7-8): 827.

Luo, Z. Y., S. R. Wang and Y. F. Liao (2004). Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 26: 455–462.

Marateanu, M. and D. Anderson (1996). Time-Temperature Dependency of Asphalt Binders-An Improved Model. Association of Asphalt Paving Technologists 65-96: 408-447.

Mohan, D., C. U. Pittman and P. H. Steele (2006). Pyrolysis of Wood/Biomass for Bio-oil:  A Critical Review. Energy & Fuels 20(3): 848-889.

Oasmaa, A. and S. Czernik (1999). Fuel oil quality of biomass pyrolysis oils-state of the art for the end-users. Energy Fuels 13: 914–921.

Ouyang, C., S. Wang, Y. Zhang and Y. Zhang (2006). Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. Polymer Degradation and Stability 91(4): 795-804.

Ozcimen, D. and F. Karaosmanoglu (2004). Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(779–787).

Petersen, J. C. (1987). Quantitative functional group analysis of asphalts using differential infrared spectrometry and selective chemical reactions- theory and application.

Puzinauskas, V. P. (1967). Evaluation of properties of asphalt cements with emphasis on consistencies at low temperatures. Proc., Association of Asphalt Paving Technologists, J. Assoc. Asphalt Paving Technology, Denver, 36: 489-540.

Raouf, M. A., M. Metwally and R. C. Williams (2010). Development of Non-Petroleum Based Binders for Use in Flexible Pavements.

Raouf, M. A. and R. C. Williams (2009). Determination of Pre-Treatment Procedure Required for Developing Bio-Binders from Bio-oils.

Raouf, M. A. and R. C. Williams (2010). General Physical and Chemical Properties of Bio-binders Derived from Fast Pyrolysis Bio-oils.

Rasmussen, R. O., R. L. Lytton and G. K. Chang (2002). Method to Predict Temperature Susceptibility of an Asphalt Binder, ASCE.

Roberts, F. L., P. S. Kandhal, E. R. Brown, D. Y. Lee and T. W. Kennedy (1996). Hot Mix Asphalt Materials, Mixture, Design, and Construction. Lanham, Maryland, National Asphalt Pavement Association Research and Education Foundation.

Ruan, Y., R. R. Davison and C. J. Glover (2003). An Investigation of Asphalt Durability: Relationships between Ductility and Rheological Properties for Unmodified Asphalts. Pet. Sci. & Tech 21(1-2): 231-254.

Scahill, J., J. P. Diebold and C. Feik (1996). Removal of residual char fines from pyrolysis vapors by hot gasification. Blackie Academic and Professional: 253-266.

Shihadeh, A. and S. Hochgreb (2002). Impact of biomass pyrolysis oil process conditions on ignition delay in compression ignition engines. Energy Fuels 16(3): 552-561.

Siddiqui, M. N. and M. F. Ali (1999). Studies on the aging behavior of the Arabian asphalts.

Sipila, K., E. Kuoppala, L. Fagernas and A. Oasmaa (1998). Characterization of biomass-based flash pyrolysis oils. Biomass & Bioenergy 14(2): 103-113.

Wan Nik, W., S. Eng Giap, H. Masjuki and H. Senin (2006). Application of modified power law and Arrhenius relationship in studying rheological behavior of bio-oils, Trans Tech Publ.

Witczak, T. K. P. a. M. W. (2001). tress Dependent Master Curve Construction for Dynamic (Complex) Modulus Association of Asphalt Paving Technologists

Wolters, R. O. (2003). Raveling of Hot Mix Asphalt. Minnesota Asphalt Pavement Association.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top