|
Ashida, F. and Tauchert, T.R. 2000. “Plane Stress Problem of a Piezothermoelastic Plate, Acta Mech., 145: 127_134. Bansal, A. and Ramaswamy, A. 2002. “FE Analysis of Piezo-Laminate Composites under Thermal Loads, J. Intell. Mater. Sys. Struct., 13:291_301. Dai, H.L., Hong, L., Fu, Y.M. and Xiao, X. 2010. “Analytical Solution for Electromagnetothermoelastic Behaviors of a Functionally Graded Piezoelectric Hollow Cylinder, Appl. Math. Modeling, 34: 343_357. Dai, H.L. and Wang, X. 2006. “Magneto-Thermo-Electro-Elastic Transient Response in a Piezoelectric Hollow Cylinder Subjected to Complex Loadings, Int. J. Solids Struct., 43:5628_5646. Dube, G.P., Kapuria, S. and Dumir, P.C. 1996a. “Exact Piezothermoelastic Solution of Simply-Supported Orthotropic Flat Panel in Cylindrical Bending, Int. J. Mech. Sci., 38:1161_1177. Dube, G.P., Kapuria, S. and Dumir, P.C. 1996b. “Exact Piezothermoelastic Solution of Simply-Supported Orthotropic Circular Cylindrical Panel in Cylindrical Bending, Arch. Appl. Mech., 66:537_554. Dube, G.P., Upadhyay M.M., Dumir, P.C. and Kumar, S. 1998. “Piezothermoelastic Solution for Angle-Ply Laminated Plate in Cylindrical Bending, Struct. Eng. Mech., 6:529_542. Dumir, P.C., Dube, G.P. and Kumar, S. 1997. “Piezothermoelastic Solution for Angle-Ply Laminated Cylindrical Panel, J. Intell. Mater. Sys. Struct., 8:452_464. Dumir, P.C., Kumari, P. and Kapuria, S. 2009. “Assessment of Third Order Smeared and Zigzag Theories for Buckling and Vibration of Flat Angle-Ply Hybrid Piezoelectric Panels, Compos. Struct., 90:346_362. Jonnalagadda, K.D., Blandford, G.E. and Tauchert, T.R. 1994. “Piezothermoelastic Composite Plate Analysis Using First-Order Shear Deformation Theory, Comput. Struct., 51:79_89. Kapuria, S. and Achary, G.G.S. 2006. “Electromechanically Coupled Zigzag Third-Order Theory for Thermally Loaded Hybrid Piezoelectric Plates, AIAA J., 44:160_170. Kapuria, S. and Achary, G.G.S. 2008. “Benchmark 3D solution and Assessment of A Zigzag Theory for Free Vibration of Hybrid Plates under Initial Electrothermomechanical Stresses, Compos. Sci Technol., 68:297_311. Kapuria, S., Dube, G.P., Dumir, P.C. and Sengupta, S. 1997. “Levy-Type Piezothermoelastic Solution for Hybrid Plate by Using First-Order Shear Deformation Theory, Compos. Part B: Eng., 28:535_546. Kapuria, S., Dumir, P.C. and Sengupta, S. 1997. “Exact Axisymmetric Solution for a Simply Supported Piezoelectric Cylindrical Shell, Arch. Appl. Mech., 67:260_273. Kapuria, S., Sengupta, S. and Dumir, P.C. 1997. “Three-Dimensional Solution for a Hybrid Cylindrical Shell under Axisymmetric Thermoelectric Load, Arch. Appl. Mech., 67:320_330. Ootao, Y. 2009. “Transient Thermoelastic and Piezothermoelastic Problems of Functionally Graded Materials, J. Therm. Stresses, 32:656_697. Ootao, Y., Akai, T. and Tanigawa, Y. 2008. “Transient Piezothermoelastic Analysis for a Functionally Graded Thermopiezoelectric Hollow Cylinder, J. Therm. Stresses, 31:935_955. Ootao, Y. and Tanigawa, Y. 2007. “Transient Piezothermoelastic Analysis for a Functionally Graded Thermopiezoelectric Hollow Sphere, Compos. Struct., 81:540_549. Soldatos, K.P. and Hadjigeorgiou, V.P. 1990. “Three-Dimensional Solution of the Free Vibration Problem of Homogeneous Isotropic Cylindrical Shells and Panels, J. Sound Vib., 137:369-384. Tang, Y.Y., Noor, A.K. and Xu, K. 1996. “Assessment of Computational Models for Thermoelectroelastic Multilayered Plates, Comput. Struct., 61:915_933. Tauchert, T.R.., Ashida, F., Noda, N., Adali, S. and Verijenko, V. 2000. “Developmemts in Thermopiezoelasticity with Relevance to Smart Composite Structures, Compos. Struct., 48:31_38. Wu, C.P., Chen, S.J. and Chiu, K.H. 2010. “Three-Dimensional Static Behavior of Functionally Graded Magneto-Electro-Elastic Plates Using the Modified Pagano Method, Mech. Res. Commun., 37:54_60. Wu, C.P., Chiu, S.J. 2001. “Thermoelastic Buckling of Laminated Composite Conical Shells, J. Therm Stresses, 24:881_901. Wu, C.P., Chiu, S.J. 2002. “Thermally Induced Dynamic Instability of Laminated Composite Conical Shells, Int. J. Solids Struct., 39:3001_3021. Wu, C.P., Chiu, K.H. and Wang, Y.M. 2008. “A Review on the Three-Dimensional Analytical Approaches of Multilayered and Functionally Graded Piezoelectric Plates and Shells, Comput. Mater. Continua, 8:93_132. Wu, C.P., Lu, Y.C. 2009. “A Modified Pagano Method for the 3D Dynamic Responses of Functionally Graded Magneto-Electro-Elastic Plates, Compos. Struct., 90:363_372. Wu, C.P., Syu, Y.S. and Lo, J.Y. 2007. “Three-Dimensional Solutions for Multilayered Piezoelectric Hollow Cylinders by an Asymptotic Approach, Int. J. Mech. Sci., 49:669_689. Wu, X.H., Shen, Y.P. and Chen, C. 2003. “An Exact Solution for Functionally Graded Piezothermoelastic Cylindrical Shell as Sensors or Actuators, Mater. Letters, 57:3532_3542. Xiang, H.J. and Shi, Z.F. 2009. “Static Analysis for Functionally Graded Piezoelectric Actuators or Sensors under a Combined Electro-Thermal Load, Eur. J. Mech. A/Solids, 28:338_346. Xu, K., Noor, A.K. and Tang, Y.Y. 1995. “Three-Dimensional Solutions for Coupled Thermo-Electro-Elastic Response of Multilayered Plates, Comput. Methods Appl. Mech.Eng., 126:355_371. Zhang, C., Di, S. and Zhang, N. 2002. “A New Procedure for Static Analysis of Thermo-Electric Laminated Composite Plates under Cylindrical Bending, Compos. Struct., 56:131_140. Zhong, Z. and Shang, E.T. 2005. “Exact Analysis of Simply Supported Functionally Graded Piezothermoelectric Plates, J. Intell. Mater. Syst. Struct., 16: 643_651.
|