Alexopoulos, P. S. and O’sullivan, T. C., Mechanical Properties of Thin Films, Annu. Rev. Mater. Sci. 20, pp.391-420, 1990.
Andreussi, F. and Gurtin, M. E., On the wrinkling of a free surface, J. Appl. Phys. 48, pp.3798-3799, 1977.
Benveniste, Y. and Miloh, T., Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, pp.309-323, 2001.
Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W., Whitesides, G. M., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393, pp.146-149, 1998.
Cammarata, R. C., Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, pp.1-38, 1994.
Chen, T., Chiu, M. S., Weng, C. N., Derivation of the generalized Young-Laplace equation of curved interface in nanoscaled solids, J. Appl. Phys. 100, 074308, 2006.
Chen, T., Dvorak, G. J., Yu, C. C., Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188, 39-54. 2007a.
Chen, T., Dvorak, G. J., Yu, C. C., Solids containing spherical nano-inclusions with interface stresses: Effective properties and thermal-mechanical connections. Int. J. Solids Struct. 44, pp.941-955, 2007b.
Chen, T. and Chiu, M. S., Effects of higher-order interface stresses on the elastic states of two-dimensional composites, Mech. Mater. 43, pp.212-221, 2011.
Chiu, M. S. and Chen, T., Effects of high-order surface stress on static bending behavior of nanowires, Physica E 44, pp.714-718, 2011.
Chiu, M. S. and Chen, T., Effects of high-order surface stress on buckling and resonance behavior of nanowires, Acta Mech. 223, pp.1473-1484, 2012.
Christensen, R. M. and Lo, K. H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27, pp.315-330, 1979.
Duan, H. L., Wang, J., Huang, Z. P., Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, pp.1574-1596, 2005.
Finn, R., Equilibrium Capillary Surfaces, Springer-Verlag, New York Inc, 1986.
Freund, L. B., Floro, J. A., Chason, E., Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations, Appl. Phys. Lett. 74, pp.1987-1989, 1999.
Freund, L. B. and Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, Cambridge, UK, 2003.
Gibbs, J. W., The Collected Works of J.W. Gibbs, Vol.1, Longmans, New York, pp.315, 1928.
Gurtin, M. E. and Murdoch, A. I., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57, pp.291-323, 1975.
Gurtin, M. E. and Murdoch, A. I., Surface stress in solids, Int. J. Solids Struct. 14, pp.431-440, 1978.
Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs, 1965.
Huang, Y. and Rosakis, A. J., Extension of Stoney’s Formula to Non-Uniform Temperature Distributions in Thin Film/Substrate Systems. The Case of Radial Symmetry, J. Mech. Phys. Solids 53, pp.2483-2500, 2005.
Huang, S. and Zhang, X., Extension of the Stoney Formula for Film-Substrate Systems With Gradient Stress for MEMS Applications, J. Micromech. Microeng. 16, pp.382-389, 2006.
Kim, C. I., Schiavone, P., Ru, C. -Q, The effects of surface elasticity on an elastic solid with mode-III crack: complete solution, J. Appl. Mech. 77, 021011, 2010
Kim, P., Abkarian, M., Stone, H. A., Hierarchical folding of elastic membranes under biaxial compressive stress, Nat. Mater. 10, pp.952-956, 2011.
Klein, C. A., How accurate are stoney's equation and recent modification, J. Appl. Phys. 88, pp.5487-5489, 2000.
Kornev, K. G. and Srolovitz, D. J., Surface stress-driven instabilities of a free film, Appl. Phys. Lett. 85, pp.2487-2489, 2004.
Laplace, P. S., Traite de Mechanique Celeste; Supplements au Livre X, Euvres Complete. 4, Gauthier-Villars, Paris, 1805.
Liu, D. Y. and Chen, W. Q., Thermal stresses in bilayer systems with weak interface, Mech. Res. Commun. 37, pp.520-524, 2010.
Liu, D. Y. and Chen, W. Q., Modified stoney’s formulas for small-scaled bilayer systems, J. Eng. Mater. Technol. 134, 031002, 2012.
Miller, A. F., Exploiting wrinkle formation, Science 317, pp.605-606, 2007.
Miller, R. E. and Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, pp.139-147, 2000.
Nix, W., Mechanical properties of thin films, Metall. Mater. Trans. A 20, pp2217-2245. 1989.
Nix, W. D. and Gao, H., An atomistic interpretation of interface stress, Scr. Mater. 39, pp.1653-1661, 1998.
Ou, Z. Y., Wang, G. F., Wang, T. J., Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity, Int. J. Eng. Sci. 46, pp.475-485, 2008.
Ou, Z. Y., Wang, G. F., Wang, T. J., Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings, Eur. J. Mech. A/Solids 28, pp.110-120, 2009.
Pocivavsek, L., Dellsy, R., Kern, A., Johnson, A., Lin, B., Lee, K. Y. C, Cerda, E., Stress and fold localization in thin elastic membranes, Science 320, pp.912-916, 2008.
Povstenko, Y. Z., Theoretical investigation of phenomena caused by heterogeneous surface tension in solids, J. Mech. Phys. Solids 41, pp.1499-1514, 1993.
Rottman, C., Landau theory of coherent interphase interfaces, Phys. Rev. B 38, 12031, 1988.
Ru C. Q., Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions, Sci. China Phys. Mech. Astron. 53, pp.536-544, 2010.
Saada, A. S., Elasticity Theory and Applications, Krieger Publishing Company, Florida, 1993.
Sadd, M. H., Elasticity Theory, Applications, and Numerics, Elsevier Inc., 2005.
Sharma, P., Ganti, S., Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, pp.535-537, 2003.
Sharma, P. and Ganti, S., Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, J. Appl. Mech. 71, pp.663-671, 2004.
Shuttleworth, R. The surface tension of solids. Proc. Phys. Soc. A. 63, pp.444-457, 1950.
Stoney, G. G., The tension of metallic films deposited by electrolysis, Proc. R. Soc. London A 82, pp.172-175, 1909.
Tai, C. T., Generalized Vector and Dyadic Analysis: Applied Mathematics in Field Theory, IEEE Press, New York, 1997.
Yang, F. Q., Size-dependent effective modulus of elastic composite materials:spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, pp.3516-3520, 2004.
Young, T. phil., An essay on the cohesion of fluid, Philos. Trans. R. Soc. London 95, pp.65-87, 1805.
Zhang, Y., Extended Stoney’s formula for a film-substrate bilayer with the effect of interfacial slip, J. Appl. Mech. 75, 011008, 2008.
邱明聖, 固體界面效應之探討, 國立成功大學土木工程研究所碩士論文, 2006.