跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林容暄
研究生(外文):Rong-ShiuanLin
論文名稱:常見鋼結構銲接接頭應力強度因子之數值分析與實驗量測
論文名稱(外文):Numerical Analyses and Experimental Measurements of Stress Intensity Factors for Some Common Welded Connections in Steel Structures
指導教授:鍾興陽
指導教授(外文):Hsin-Yang Chung
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:238
中文關鍵詞:銲接接頭填角銲裂縫應力強度因子最小二乘法數位影像相關法裂縫張開位移
外文關鍵詞:Welded ConnectionFillet WeldCrackStress Intensity FactorLeast-Squares MethodDigital Image Correlation MethodCrack Opening Displacement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究由基本破壞力學的觀點出發,以應力強度因子作為衡量裂縫尖端應力集中程度的指標,對常見鋼結構銲接接頭(填角銲十字接頭、填角銲單搭接接頭及梁柱接頭)的裂縫問題,以最小二乘法配合有限元素法或光學實驗進行分析。在數值擬部份,透過大量的有限元素數值模擬,分析重要幾何尺寸參數組合對常見鋼結構銲接接頭應力強度因子之影響,並以統計方法進行迴歸分析,求得常見鋼結構銲接接頭的應力強度因子迴歸公式。在實驗部分,共製作了各種接頭共二十一組不同幾何尺寸的試體,實驗後,透過與最小二乘法配合有限元素數值模擬結果及文獻公式解的比較,顯示經由光學實驗與數位影像相關法處理所得到各試體之應力強度因子皆有不錯的精度,亦可驗證所採用之數值分析方法之準確性。本研究所得之應力強度因子迴歸公式與所採用的光學實驗方法,可以應用於鋼結構物之安全性評估。
Based on the fracture mechanics, this study took stress intensity factor (SIF) as the index to measure the stress concentration of a crack tip, and analyzed the crack problems for some common welded connections in steel structures, including fillet welded cruciform connections, fillet welded lap connections, and beam-column connections, by using the Least-Squares Method along with finite-element method or optical experiments. In the numerical part of this study, numerous numerical examples were analyzed to investigate the influences of the important geometric dimensional parameters to SIF, and the numerical results were employed to develop the regression formulas for KI or KII for these common welded connections. In the experimental part of this study, a total of twenty-one welded connection specimens were tested and analyzed using the Digital Image Correlation Method. After compared with the numerical results from the finite-element simulations and the Least-Squares Method and with the results computed from the formulas in literature, the test results showed that the employed experimental method could give the satisfactory SIF evaluations for the welded connection specimens. Moreover, the test results also verified the precision of the employed numerical analysis method. The derived SIF regression formulas and the employed optical experimental method in this study could be applied to the safety assessments of existing steel structures.
摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
符號表 XIX
第一章 緒論 21
1.1 研究背景與動機 21
1.2 研究目的 23
1.3 研究範圍與方法 24
1.4 論文架構 25
第二章 文獻回顧 31
2.1 應力強度因子之計算 31
2.2 數位影像相關位移量測系統 32
2.3 常見鋼結構銲接接頭之應力強度因子 34
2.4.1 填角銲十字接頭 34
2.4.2 填角銲單搭接接頭 36
2.4.3 梁柱接頭 37
第三章 應力強度因子之數值分析與實驗量測 41
3.1 前言 41
3.2 最小二乘法相關理論 41
3.3 數值模擬與設定 44
3.3.1 參數設定與分析假設 44
3.3.2 元素之選擇與切割 44
3.3.2.1 奇異元素 44
3.3.2.2 三角形元素 47
3.3.3 邊界條件與應力施加 47
3.3.4 輸出 47
3.3.5 網格收斂性分析 48
3.4 實驗流程與設定 48
3.4.1 儀器介紹 48
3.4.2 試體準備 49
3.4.2.1 試體加工與量測 49
3.4.2.2 隨機微點製作 50
3.4.3 實驗流程與儀器架設 50
3.4.4 影像之後處理 52
3.4.4.1 解析度與檔案類型 52
3.4.4.2 以數位影像相關法比對影像 52
3.4.4.3 軟體分析 55
3.4.4.4 程式進階功能 56
3.4.5 最佳化實驗參數設定分析 57
3.4.5.1 影像清晰度 57
3.4.5.2 影像亮度 58
第四章 承拉型填角銲十字接頭之數值模擬與實驗 74
4.1 前言 74
4.2 數值模擬與迴歸 75
4.2.1 CLR接頭模型 75
4.2.1.1 模型設計 76
4.2.1.2 模擬結果與迴歸分析 76
4.2.1.3 迴歸結果與誤差 80
4.2.2 CLT接頭模型 80
4.2.2.1 模型設計 81
4.2.2.2 模擬結果與迴歸分析 81
4.2.2.3 迴歸結果與誤差 84
4.2.3 CLS接頭模型 84
4.2.3.1 模型設計 84
4.2.3.2 模擬結果與迴歸分析 85
4.2.3.3 迴歸結果與誤差 87
4.2.4 承拉型雙邊與單邊填角銲十字接頭之比較 87
4.2.5 銲根裂縫與銲趾裂縫之相互影響 88
4.3 實驗 89
4.3.1 試體準備 89
4.3.2 結果與比較 89
第五章 非承拉型填角銲十字接頭之數值模擬與實驗 125
5.1 前言 125
5.2 數值模擬與迴歸 125
5.2.1 CNR接頭模型 126
5.2.1.1 模型設計 126
5.2.1.2 模擬結果與迴歸分析 126
5.2.1.3 迴歸結果與誤差 129
5.2.2 CNT接頭模型 129
5.2.2.1 模型設計 130
5.2.2.2 模擬結果與迴歸分析 130
5.2.2.3 迴歸結果與誤差 132
5.2.3 承拉型與非承拉型的填角銲十字接頭應力強度因子之比較 133
5.2.3.1 CLR模型與CNR模型銲根裂縫應力強度因子之比較 134
5.2.3.2 CLT模型與CNT模型銲趾裂縫應力強度因子之比較 134
5.2.4 銲根裂縫與銲趾裂縫之相互影響 135
5.3 實驗 135
5.3.1 試體準備 135
5.3.2 結果與比較 136
第六章 填角銲單搭接接頭之數值模擬 160
6.1 前言 160
6.2 數值模擬與迴歸 160
6.2.1 SLR接頭模型 161
6.2.1.1 模型設計 161
6.2.1.2 模擬結果與迴歸分析 162
6.2.1.3 迴歸結果與誤差 164
6.2.1.4 不同邊界條件對SLR模型之影響 165
6.2.2 SLT接頭模型 165
6.2.2.1 模型設計 166
6.2.2.2 模擬結果與迴歸分析 166
6.2.2.3 迴歸結果與誤差 168
6.2.3 銲根裂縫與銲趾裂縫之相互影響 168
6.2.4 數值模擬與文獻比較 169
第七章 梁柱接頭之數值模擬與實驗 203
7.1 前言 203
7.2 數值模擬與迴歸 204
7.2.1 模型設計 205
7.2.2 數值模擬結果與迴歸分析 205
7.2.3 「柱板-內橫隔板EGW銲接頭」施工問題之討論 208
7.2.4 固有裂縫之改善方法 209
7.2.4.1 「柱板-內橫隔板EGW銲接頭」之改善 209
7.2.4.2 「柱板-梁翼板全滲透銲接頭」之改善 210
7.3 實驗 211
7.3.1 試體準備 211
7.3.2 結果與比較 212
第八章 結論與建議 228
8.1 結論 228
8.2 建議 230
參考文獻 231

AISC Steel Construction Manual, 13th edition, American Institute of Steel Construction, Chicago, U.S.A. (2005).

ASTM E399-09, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, Annual Book of ASTM Standards, West Conshohocken, Philadelphia, U.S.A. (2009).

AWS D1.1/D1.1M, Structural Welding Code-Steel, American Welding Society, Miami, Florida, U.S.A. (2002).

AWS D1.8/D1.8M, Structural Welding Code-Seismic Supplement, American Welding Society, Miami, Florida, U.S.A. (2009).

Barsom J.M. and Rolfe S.T., “Fracture and fatigue control in structures, Second edition: Applications of fracture mechanics, Butterworth-Heinemann. (1987).

Barsoum R.S., “On the use of isoparametric finite elements in linear fracture mechanics, International Journal for Numerical Method in Engineering; 10:25-37. (1976).

Baughurst L. and Voznaks G., “Welding defects, causes and correction, Australian Bulk Handling Review; 26-28. (2009).

Belytschko T., Gu L., and Lu Y.Y., “Fracture and crack growth by element free Galerkin methods, Modelling and Simulation in Materials Science and Engineering; 2(3A):519-534. (1994).

Blandford G.E., Ingraffea A.R., and Liggett J.A., “Two-dimensional stress intensity factor computations using the boundary element method, International Journal for Numerical Methods in Engineering; 17:387-404. (1981).

Bowness D. and Lee M.M.K., “Stress intensity factor solutions for semi-elliptical weld-toe cracks in T-butt geometries, Fatigue & Fracture of Engineering Materials & Structures; 19(6):787-797. (1996).

British Standard 7608, Code of practice for fatigue design and assessment of steel structures, British Standards Institution, London, U.K. (1993).

British Standard 7910, Guide on methods for assessing the acceptability of flaws in metallic structures, British Standard Institution, London, U.K. (2005).

Bruck H.A., McNeil S.R., Sutton M.A., and Peters W.H., “Digital image correlation using Newton-Raphson method of partial differential correction, Experimental Mechanics; 29(3):261-268. (1989).

Chen D.A., “Stress intensity factors for V-notched strip under tension or in-plane bending, International Journal of Fracture; 70:81-97. (1995).

Chi W.M., Deierlein G.G., and Ingraffea A.R., “Finite-element fracture analyses of welded beam-column connections, Fatigue and Fracture Mechanics, ASTM STP 1360; 30:439-455. (2000).

Chi W.M., Deierlein G.G., and Ingraffea A.R., “Fracture toughness demands in welded beam-column moment connections, Journal of Structural Engineering; 126(1):88-97. (2000).

Chow W.T. and Atluri S.N., “Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral, Computational Mechanics; 16(6):417-425. (1995).

Chung H.Y., Liu S.H., Lin R.S., and Ju S.H., “Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera, International Journal of Fatigue; 30:1861-1872, (2008).

Chung H.Y., Lin Y.Z., and Lin R.S., “Numerical and experimental applications of the least-squares method to determine mode-II stress intensity factors for double fillet welded lap joints, Fatigue & Fracture of Engineering Materials & Structures; 32(1):41-60. (2009).

Chung H.Y., Lin R.S., and Lin K.J., “Evaluations of mixed-mode stress intensity factors for load-carrying fillet welded cruciform joints using the least-squares method, Journal of the Chinese Institute of Engineers; 34(2):265-285. (2011).

Chu T.C., Ranson W.F., Sutton M.A., and Peter W.H., “Application of Digital-Image-Correlation technique to experimental mechanics, Experimental Mechanics; 25:232-244. (1985).

Fisher, J.W., “Fatigue and fracture in steel bridges: Case studies, Wiley-Interscience, Wiley. (1984).

Frank K.H. and Fisher J.W., “Fatigue strength of fillet welded cruciform joints, Journal of the Structural Division, ASCE; 105(ST9):1727-1740. (1979).

Fu B., Haswell J.V., and Bettess P., “Weld magnification factors for semi-elliptical surface cracks in fillet welded T-butt joint models, International Journal of Fracture; 63:155-171. (1993).

Griffith, A.A., The theory of rupture. In: Proc., First International Congress for Applied Mechanics, Delft, 55-63. (1924).

Harris C., Lie S.T., Zhao Z., and Yan S.H., “Two-dimensional and three-dimensional magnification factors, Mk, for non-load-carrying fillet welds cruciform joints, Engineering Fracture Mechanics; 65(4):435-453. (2000).

Helm J.D., McNeill S.R., and Sutton M.A., “Improved three-dimensional image correlation for surface displacement measurement, Optical Engineering; 35(7):1911-1920. (1996).

Henshell R.D. and Shaw K.G., “Crack tip finite elements are unnecessary, International Journal for Numerical Methods in Engineering; 9:495-507. (1975).

Hobbacher A., “Stress intensity factors of welded joints, Engineering Fracture Mechanics; 46(2):173-182. (1993).

Hsu D.S. and Ju S.H., “Micro SAP-finite element structural analysis package, Unalis Corporation, Taiwan. (1988).

Ingraffea A.R. and Manu C., “Stress-intensity factor computation in three dimensions with quarter-point elements, International Journal for Numerical Methods in Engineering; 15(10):1427-1445. (1980).

Irwin G.R., “Analysis of Stresses and Strains Near The End of A Crack Traveling A Plate, Journal of Applied Mechanics; 24:361-364. (1957).

Isida M., “Effect of width and length on stress intensity factors of internally cracked plates under various boundary conditions, International Journal of Fracture; 7(3):301-316. (1971).

John E.S., “Wide range stress intensity factor expressions for ASTM E399 standard fracture toughness specimens, International Journal of Fracture; 12(3):475-476. (1995).

Ju S.H., “Simulating stress intensity factors for anisotropic materials by the least squares method, International Journal of Fracture; 81:283-297. (1996).

Ju S.H., “Simulating three-dimensional stress intensity factors by the least-squares Method, International Journal for Numerical Method in Engineering; 43:1437-1451. (1998).

Ju S.H. and Rowlands R.E., “Thermoelastic determination of KI and KII in an orthotropic graphite/epoxy composite, Journal of Composite Materials; 37:2011-2025. (2003).

Kai X., Yong L., and Lie S.T., “Load-carrying welds joints analysis using boundary element method, International Journal of Solids and Structures; 42(9-10): 2965-2975. (2005).

Kawin S., Takeshi H., and Chitoshi M., “Fatigue strength assessment of load-carrying cruciform joints with material mismatching in low- and high-cycle fatigue regions based on the effective notch concept, International Journal of Fatigue; 40: 120-128. (2012).

Khodadad Motarjemi A., Kokabi A.H., Ziaie A.A., Manteghi S., and Burdekin F.M., “Comparison of the stress intensity factor of T and cruciform welded joints with different main and attachment plate thickness, Engineering Fracture Mechanics; 65(4):455-466. (2000).

Lie S.T. and Bian C., “Load-carrying fillet welds using dual boundary element method, Journal of Structural Engineering, ASCE; 123(12):1603-1613. (1997).

Lu H., Vendroux G., and Knauss W.G., “Surface deformation measurements of a cylindrical specimen by digital image correlation, Experimental Mechanics; 37:433-439. (1997).

Lyons J.S., Liu J., and Sutton M.A., “High-temperature deformation measurements using digital-image correlation, Experimental Mechanics; 36(1):64-70. (1996).

Maddox S.J., “An analysis of fatigue cracks in fillet welded joints, International Journal of Fracture; 11(2):221-243. (1975).

Maddox S.J. and Andrews R.M., “Stress intensity factors for weld toe cracks, Computer Aided Assessment and Control of Localized Damage; 2:329-342. (1990).

McNeill S.R., Peters W.H., and Sutton M.A., “Estimation of stress intensity factor by digital image correlation, Engineering Fracture Mechanics; 28(1):101-112. (1987).

Michael F.A. and David R.H.J. Engineering Materials. Oxford: Pergamon Press., England. ISBN 0-08-032532-7. (1986).

Miller D.K., “Designing welded lap joints, Welding Innovation; 18:6-8. (2001).

Murakami Y., “Some problems of welded joints from a view point of the stress intensity factors, Preprint of JSME; 800(10):170-177. (1980).

Nakashima M., Inoue K., and Tada M., “Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake, “Engineering Structures; 20(4-6):271-281. (1998).

Nykänen T., Marquis, G., and Björk T., “Fatigue analysis of non-load-carrying fillet welded cruciform joints, Engineering Fracture Mechanics; 74(3):399-415. (2007).

Octavian P., Mamadou M., Frédéric D., and Joseph A., “Identification algorithm for fracture parameters by combining DIC and FEM approaches, International Journal of Fracture; 170:101-114. (2011).

Pang H.L.J., “Analysis of weld toe profiles and weld toe cracks, International Journal of Fatigue; 15(1):31-36. (1993).

Parks D.M., “A stiffness derivative finite element technique for determination of crack tip stress intensity factors, International Journal of Fracture; 10(4):487-502. (1974).

Perie´ J.N., Calloch S., Cluzel C., and Hild F., “Analysis of a multiaxial test on C/C composite by using digital image correlation and a damage model, Experimental Mechanics; 42:318-328. (2002).

Peters W.H. and Ranson W.F., Digital imaging techniques in experimental stress analysis, Optics in Engineering; 21(3): 427-432. (1982).

Popov E.P., Yang T.S., and Chang S.P., “Design of steel MRF connections before and after 1994 Northridge earthquake, Engineering Structures; 20(12): 1030-1038. (1998).

Rice J.R., “A path independent integral and the approximate analysis of stress concentration by notches and cracks, Journal of Applied Mechanics; 35:379-386. (1968).

Réthoré J., Gravouil A., Morestin F., and Combescure A., “Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral, International Journal of Fracture; 132(1):65-79. (2005).

Righiniotis T.D., Omer E., and Elghazouli A.Y., “A simplified crack model for weld fracture in steel moment connections, Engineering Structures; 24(9):1133-1140. (2002).

Roux S. and Hild F., “Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches, International Journal of Fracture; 140: 141-157. (2006).

Shih C.F., Moran B., and Nakamura T., “Energy Release Rate along a Three-Dimensional Crack Front in a Thermally Stressed Body, International Journal of Fracture; 30:79-102. (1986).

Stern M., Becker E.B., and Dunham R.S., “A contour integral computation of mixed-mode stress intensity factors, International Journal of Fracture; 12(3):359-368. (1976).

Sun Z.L., Lyons J.S., and McNeill S.R., “Measuring microscopic deformations with digital image correlation, Optics and Lasers in Engineering; 27(4):409-428. (1997).

Sutton M.A., Wolters W.J., Peters W.H., Ranson W.F., and McNeill S.R., “Determination of displacements using an improved digital correlation method, Image and Vision Computing; 1(3): 133-139. (1983).

Sutton M.A., Cheng M., Peters W.H., Chao Y.J., and McNeil S.R., “Application of an optimized digital image correlation method to planar deformation analysis, Image Vision Computing; 4(3):143-150. (1986).

The James F. Lincoln Arc Welding Foundation, weld cracking. an excerpt from the fabricators' and erectors' guide to welded steel construction. (2011).

Tong W., “Plastic surface strain mapping of bent sheets by image correlation, Experimental Mechanics; 44:502-511. (2004).

Tremblay R., Timler P., Bruneau M., and Filiatrault A., “Performance of steel structures during the 1994 Northridge earthquake, Canadian Journal of Civil Engineering; 22(2):338-360. (1995).

Usami S. and Kusumoto S., “Fatigue strength at root of cruciform, tee and lap joints (1st report), Transactions, Japan Welding Society; 9(1):1-10. (1978).

Walker W.H., Holbrook M.D., and Cassity P.A., Three Case Histories of Cracking Problems Associated with Steel Bridge Floor Beams, Civil Engineering Studies SRS-569, Technical Report. (2009).

Wattrisse B., Chrysochoos A., Muracciole J.M., and Gaillard M., “Analysis of strain localization during tensile tests by digital image correlation, Experimental Mechanics; 41:29-39. (2001).

Yoneyama S., Kitagwa A., Iwata S., Tani K., and Kikuta H., “Bridge deflection measurement using digital image correlation, Experimental Techniques; 31:34-40. (2007).

Yoneyama S., Ogawa T.B., and Kobayashi Y., “Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods, Engineering Fracture Mechanics; 74:1399-1412. (2007).

Leica Z6 APO實體巨視顯微鏡規格,美嘉儀器股份有限公司,網址:http://www.major.com.tw/,上網日期:2012-08-22。(2012)。

Photonik PL3000雙鵝頸光纖鹵素冷光燈規格,KORINS,網址:http://www.korins.com,上網日期:2012-08-22。(2012)。

SONY DSLR-A850數位照相機規格,台灣新力公司,網址:http://www.sonystyle.com.tw,上網日期:2012-08-22。(2012)。

賴建霖,「鋼骨箱型柱內橫隔板電熱熔渣銲接之有限元素分析」,碩士學位論文,國立交通大學土木工程系,(2007)。

林克強、莊勝智、張福全、張柏彥,「台灣典型鋼梁與箱型柱採梁翼切削或梁翼加蓋板抗彎接頭之破壞模式」,國家地震中工程研究中心研究報告,鋼結構耐震設計與分析研討會論文集,編號NCREE-08-037,台南,(2008)。

林坤震,「不同寬厚度對接鋼板接頭應力強度因子之研究」,碩士學位論文,國立成功大學土木工程系,(2008)。

林奕佐,「鋼構填角銲搭接接頭應力強度因子之研究」,碩士學位論文,國立成功大學土木工程系,(2007)。

劉淑秀,「應用數位相機發展非接觸式量測技術及建立自動化運算程式」,博士學位論文,國立成功大學土木工程系,(2007)。

梁宇宸、陳正誠、蔡顯榮,「受高入熱量ESW銲接下箱型鋼柱材質之影響」,論文編號I-0353,中華民國第九屆結構工程研討會,國賓大飯店,高雄,(2008)。

梁宇宸、陳正誠、蔡顯榮,「電熱熔渣銲(ESW)對箱型柱板材質之熱影響」,鋼結構設計與施工技術研討會,中華民國鋼結構協會,(2008)。

黃莉婷,「利用數位影像相關法量測鋼結構常見填角銲接頭之應力強度因子」,碩士學位論文,國立成功大學土木工程系,(2009)。

中國土木水利工程學會,「混凝土工程設計規範與解說(土木401-96)」,(2007)。

陳正平,「談鋼結構高樓梁-柱接頭電熱熔渣銲接之設計與施工」,技師報,台灣省土木技師公會, No. 741,第3-4頁,臺北,(2011)。

陳正平,「鋼結構電熱熔渣銲接之安全性探討」,鋼結構協會會刊,中華民國鋼結構協會, No. 42,第26-36頁,臺北,(2011)。

王瀅晴,「高強度鋼厚板面外受力行為」,碩士學位論文,國立臺灣科技大學營建工程系,(2009)。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊