跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳育迪
研究生(外文):Yu-TiWu
論文名稱:軟性材料之線黏彈性質
論文名稱(外文):Linear viscoelastic properties of soft material
指導教授:王雲哲
指導教授(外文):Yun-Che Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:197
中文關鍵詞:軟物質黏彈性力學聖維南原理矽膠矽凝膠水凝膠
外文關鍵詞:Soft materialviscoelasticitysilicone rubbersilicone gelhydrogel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
彈性係數分佈範圍從幾kPa到幾MPa的軟物質,在本論文中我們用實驗的方式來探討他們的線黏彈性係數,在頻率域和溫度域來確定消散模數和動態模數。在這個方法中,我們使用鐘擺式黏彈性頻譜儀、動態機械分析儀和流變儀來測量矽膠、矽凝膠、水凝膠和其他的軟性物質。水凝膠的實驗於濕的狀態下進行測試,在測試的過程中保持樣品表面上的水分。由DMA和TA這兩個商業設備進行的實驗數據都僅限於低頻,但可以有一些溫度的改變。PVS雖然現在還在設計階段,還不能於升高溫度的狀態下測量但量測的頻率範圍可以到20千赫。
PVS採用了雷射位移測量系統來測量試體在受扭轉和彎矩時的變形,實驗中的作用力是藉著永久磁鐵和 Helmholz 線圈產生的磁場交互作用產生的磁力,我們發現他在試體上能產生的最小應力大約是在1個 Pa 左右。在比較軟的試體中,測得的正切消散模數之數量級大約為0.1附近以及動態模數的量大概是是在幾個 kPa;少部分的軟性物質會到幾個 MPa。
在實驗中,我們對五種試體進行測試,分別為有機矽、矽膠、還有三種矽凝膠, 經過測試後,有機矽量得之有機矽的楊式模數和剪力模數大約為 4~7 MPa 和 1.2 MPa,正切消散模數大約為0.047~0.065和0.07在彎矩和扭轉的實驗下。
矽膠之楊式模數和剪力模數分別為370~590 kPa 和62~184 kPa之間,正切消散模數在彎矩和扭轉力的情形下約為0.05~0.07和0.048~0.055。
矽凝膠(AB)、矽凝膠(透明)和矽凝膠(橘色)之楊式模數分別為 8.2~20.7 kPa、27.5~82.6 kPa 和 63.7~90.4 kPa,剪力模數分別為 2.6~6 kPa,14~21 kPa 和 13~28 kPa。正切消散模數在受彎矩時分別測得 0.2~0.263,0.09~0.057 和 0.071~0.081。受扭轉時測得之正切消散模數分別為 0.21~0.3、0.048~0.065 和 0.047~0.067。
Soft materials, which have an elastic modulus on the order of few kPa up to few MPa, are experimentally studied to determine their linear viscoelastic properties. Both of loss tangent and the magnitude of dynamic modulus are determined in a frequency and temperature range. In this work, silicone rubber, silicone gel, hydrogel and other soft materials are tested with the pendulum-type viscoelastic spectroscopy (PVS), dynamic mechanical analyzer (DMA) and the TA rheometer. For hydrogel, the tests were conducted under the wet conditions to maintain the moisture on the sample surface during the tests. Data form the commercial devices, DMA and TA, are limited to low frequency, but with some temperature changes. The PVS, at the cruet stage of design, is not able to produce data at elevated temperature, but the frequency range is up to 20 kHz. The PVS adopts a laser-based displacement measurement system to measure the deformation of the sample under torsion or bending. Applied force is generated by the magnetic interaction between a permanent magnet and a set of Helmholtz coil. It is found that smallest resolved applied stress on the specimen is on the order of 1 Pa. Loss tangent of the tested materials is on the order of 0.1, and dynamic modulus on the order of few kPa for softer samples; few MPa for less soft samples.


Through the experimental work, we tested five kinds of soft materials. They are PDMS, silicone rubber and three kinds of silicone gel. The Young's modulus and shear modulus of the materials are, respectively, about 4~7 MPa and 1.2 MPa, and their tanδ is 0.047~0.065 and 0.07, respectively, from bending and torsion tests. Specifically, Young's modulus and shear modulus of silicone rubber is 370~590 kPa, tanδ from bending and torsion test is 0.05~0.07 and 0.048~0.055. Young's modulus of silicone gel (AB), transparent silicone gel and silicone gel (orange) is 8.2~20.7 kPa, 27.5~82.6 kPa and 63.7~90.4 kPa, shear modulus is 2.6~6 kPa, 14~2 kPa and 13~28 kPa. tanδ of silicone gel (AB), transparent silicone gel and silicone gel (orange) from bending test is 0.2~0.263, 0.09~0.057 and 0.071~0.081 from torsion test is 0.21~0.3, 0.048~0.065 and 0.047~0.067.
[1] R. S. Lakes. Viscoelastic Materials. Cambridge University Press), New York, 2009.
[2] R. M. Christensen. Theory of Viscoelasticity. Academic, New York, 2 edition, 1982.
[3] J. D. Ferry. Viscoelastic Properties of Polymers. J. Wiley, New York, 2 edition, 1979.
[4] C. Zener. Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago, 1948.
[5] A. S. Nowick and B. S. Berry. Anelastic Relaxation in Crystalline Solids. Academic Press, New York, 1972.
[6] M. Brodt and R. S. Lakes. Viscoelastic behaviour in indium alloys: InSn, InBi, InCd and InSnCd. Journal of
Materials Science, 31(24):6577–6581, 1996.
[7] P. M. Buechner, R. S.Lakes, C. Swan, and R. A. Brand. A Broadband Viscoelastic Spectroscopic Study of
Bovine Bone: Implications for Fluid Flow. Annals of Biomedical Engineering, 29(8):719–728, 2001.
[8] M. Brodt and R. S. Lakes. Composite Materials Which Exhibit High Stiffness and High Viscoelastic Damping.
J Biomech Eng, 29(14):1823–1833, 1995.
[9] I. S. Sokolnikoff. Mathematical Theory of Elasticity. McGraw-Hill, New York, 2 edition, 1956.
[10] S. P. Timoshenko and Goodier J. Theory of Elasticity. McGraw-Hill, New York, 3 edition, 1970.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top