跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃碩偉
研究生(外文):Shou-WeiHuang
論文名稱:還原劑添加於回收瀝青混凝土之黏結料性質
論文名稱(外文):Binder Characteristics of Reclaimed Asphalt Pavement (RAP) Mixed with Recycling Agents
指導教授:陳建旭陳建旭引用關係
指導教授(外文):Jian-Shiuh Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:212
中文關鍵詞:再生瀝青黏結料軟化劑再生劑質流試驗紅外線光譜凝膠滲透層析
外文關鍵詞:Reclaimed Asphalt Pavement (RAP)Softening AgentRejuvenating AgentRheological TestInfrared Spectroscopy (IR)Gel Permeation Chromatography (GPC)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
當瀝青混凝土鋪面達服務年限需刨除或挖除重鋪,刨(挖)除之舊鋪面稱回收瀝青混凝土(Reclaimed Asphalt Pavement, RAP),RAP經適當處置後,可作為鋪面材料再次應用於新鋪面中。然而,RAP之回收瀝青經環境作用後,性質已不似新鮮瀝青,添加還原劑為目前恢復回收瀝青性質的方式之一,但還原劑之種類、性質和用量仍有待探討。
本研究採用2種不同黏度之RAP回收瀝青,依不同還原劑添加比例混拌成為再生瀝青黏結料(Recycling Asphalt Binder,RAB),還原劑包含再生劑(RA5和RA75)以及軟化劑(AC5和AC10),並透過動態剪切質流儀(Dynamic Shear Rheometer, DSR)、凝膠滲透層析儀(Gel Permeation Chromatography, GPC)以及傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)對RAB與AC20新鮮瀝青進行物性與化性比較,最後嘗試找出還原劑添加量的檢出方式。
質流試驗結果顯示,還原劑能有效降低RAB黏度,接近新鮮瀝青AC20,但是RAB之複合模數G*可能高於新鮮瀝青,而高頻率區的相位角則皆低於新鮮瀝青之相位角,說明還原劑無法完全恢復回收瀝青之質流性質。此外,分子量分佈試驗結果顯示添加軟化劑之RAB分子量分佈與AC20較相似,而添加再生劑則使中分子減少且小分子增加,但無論添加再生劑或軟化劑,大分子比例皆增加;官能基試驗結果顯示無論添加軟化劑或再生劑皆能減少氧化官能基比例,而再生劑對RAB的碳氫官能基影響較顯著,軟化劑較不明顯。將上述各項試驗參數帶入統計軟體進行複迴歸分析,結果顯示RAB分子量分布的大分子比例與相位角(25度, 1.6 Hz)可作為潛在的還原劑含量預測因子。

The utilization of reclaimed asphalt pavement (RAP) helps to conserve natural resources and land needed for disposal of these materials. RAP can be combined with virgin aggregates and binder to produce hot mixed asphalt (HMA) mixtures. Although a significant difference in viscosity between aged and virgin binders, the addition of recycling agent into the aged binder is one of the ways to recover the properties of aged binders. However, little information was known about the chemical composition as well as the rheological behavior of the mixed asphalt binder.
The reclaimed binder used was extracted from two kinds of RAP, which were different in viscosity. Then mixed reclaimed binder and recycling agents, which include rejuvenating agent (RA5 and RA75) and softening agent (AC5 and AC10), by various contents. The mixed binder is called Recycling Asphalt Binder (RAB). Dynamic Shear Rheometer (DSR), Gel Permeation Chromatography (GPC), and Fourier Transform Infrared Spectroscopy (FTIR) were used to evaluate the property of RAB in this study, and the physical and chemical characteristics between RAB and virgin binder AC20 were compared. Finally, this study tried to find a way to identify the content of recycling agent of RAB.
Rheological result indicated that recycling agents are able to decrease viscosity of RAB to be equal to AC20, but higher complex modulus G* and lower phase angle at high frequency region might result. Recycling agents failed to recover all the RAB rheological properties as AC20. Furthermore, the RAB mixed with softening agent is more similar to AC20 in molecular size distribution, while rejuvenator will not only decrease medium molecular size, but also increase small molecular size. On the other hands, proportion of oxygen functionalities will decrease as recycling agent increase. However, rejuvenator affects hydrocarbon functional group more significantly than softening agents. The statistical results indicated that large molecular size (LMS) and phase angle at 1.6 Hz@25 degrees might be the potential indicator to predict recycling agent content of RAB.

摘要 I
誌謝 IV
目錄 V
表目錄 IX
圖目錄 XI
第一章 緒論 1-1
1.1前言 1-1
1.2研究動機 1-3
1.3研究目的 1-3
1.4研究範圍 1-3
第二章 文獻回顧 2-1
2.1 瀝青黏結料 2-1
2.1.1 瀝青特性與組成 2-1
2.1.2 瀝青老化 2-9
2.1.3 瀝青老化對官能基之影響 2-12
2.1.4 瀝青分子尺寸 2-17
2.2 還原劑(Recycling Agents) 2-23
2.2.1 再生劑擴散作用 2-24
2.3 瀝青質流性質 2-27
2.3.1 複合剪力模數 2-27
2.3.2 動態力學分析 2-30
2.3.3 時間/溫度重疊原理與主曲線 2-31
2.3.4 瀝青質流模型 2-33
2.4 化學成分與物理性質之關係 2-37
2.5 瀝青改質劑檢出方式 2-41
2.6 再生瀝青混凝土 2-43
2.6.1 RAP與新鮮瀝青間複合層 2-43
2.6.2 RAP添加量 2-43
第三章 研究計畫 3-1
3.1 研究方法 3-1
3.2 試驗方法與設備 3-3
3.2.1 回收瀝青萃取試驗 3-3
3.2.2 動態剪切質流儀( Dynamic Shear Rheometer) 3-5
3.2.3 傅立葉轉換紅外線光譜儀( Fourier Transform Infrared Spectroscopy, FTIR) 3-10
3.2.4 凝膠滲透層析儀(Gel Permeation Chromatography, GPC) 3-17
3.3 還原劑添加量 3-22
3.3.1 還原劑添加量決定方式 3-22
3.3.2 還原劑混拌方式 3-23
3.3.3 再生瀝青黏結料(Recycled Asphalt Binder, RAB) 3-24
第四章 試驗結果與討論 4-1
4.1 實驗室老化瀝青化性分析結果 4-1
4.1.1 實驗室老化瀝青GPC試驗結果 4-1
4.1.2 實驗室老化瀝青FTIR試驗結果 4-4
4.2 試驗材料基本物性 4-10
4.2.1 RAP瀝青含量與粒料篩分析 4-10
4.2.2 試驗材料黏度試驗 4-12
4.2.3 再生劑基本性質及規範 4-13
4.2.4 試驗材料質流性質 4-14
4.3 試驗材料化學性質 4-18
4.3.1 GPC試驗結果 4-18
4.3.2 FTIR試驗結果 4-23
4.4 試驗材料物性與化性綜合討論 4-28
4.5 再生瀝青黏結料物性 4-30
4.5.1 黏度特性 4-30
4.5.2 複合模數G*試驗結果 4-35
4.5.3 相位角試驗結果 4-40
4.5.4 Black Diagram 4-44
4.5.5 交叉頻率實驗值與迴歸值比較 4-47
4.5.6 零剪力黏度(Zero Shear Viscosity, ZSV) 4-48
4.6 再生瀝青黏結料化學性質 4-50
4.6.1 再生瀝青黏結料(RAB)之GPC試驗結果 4-50
4.6.2 再生黏結料FTIR試驗結果 4-57
4.7 再生黏結料物性與化性綜合討論 4-62
4.8 再生瀝青黏結料與純瀝青性質比較 4-64
4.9 還原劑於再生瀝青黏結料中檢出方式 4-72
第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-3
參考文獻 參-1
附錄 附-1
附錄A 附-1
附錄B 附-17
附錄C 附-20
附錄D 附-22


杜逸虹 (1983) 聚合體學(高分子化學),三民書局
林東慶 (2004) 依據瀝青性質評估再生瀝青混凝土添加比例,國立成功大學土木工程研究所碩士論文,台南
林晉哲 (2004) 添加不同再生料含量對瀝青混凝土之影響,國立成功大學土木工程研究所碩士論文,台南
邱德超 (2005) 分析回收瀝青添加軟化劑之膠漿性質,國立成功大學土木工程研究所碩士論文,台南
姜榮彬 (1993) 「再生瀝青原理與應用」,第一屆鋪面材料再生學術研討會,第191-200頁
許慧玲 (2005) 分析回收瀝青添加再生劑之膠漿性質,國立成功大學土木工程研究所碩士論文,台南
蔡長展 (1993) 紅外線光譜分析評估再生瀝青之特性及應用於再生瀝青混凝土配比之研究,國立成功大學土木工程研究所碩士論文,台南
蕭志銘 (1992) 「瀝青老化特性之評估 - 利用薄膜烘箱試驗及滾動薄膜烘箱試驗」,第六屆路面工程學術研討會,第117-134頁
Airey, G.D. (1997). Rheological Characteristics of Polymer Modified and Aged Bitumens, Ph.D. Thesis, Department of Civil Engineering, University of Nottingham, United Kingdom.
Al-Qadi, I.L., Elseifi, M., Carpenter, S.H. (2007). Reclaimed Asphalt Pavement – A Literature Review, Illinois Center for Transportation, FHWA-ICT-07-001.
American Society for Testing and Materials (2010). Standard Practice for Classifying Hot-Mix Recycling Agents, ASTM D4552/D4552M – 10.
Anderson, D.A., Christensen, D.W., and Bahia, H. (1991) Physical Properties of Asphalt Cement and The Development of Performance-Related Specifications, Journal of the Association of Asphalt Paving Technologists, Vol.60, pp.437-532
Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Sharma, M.G., Antle, C.E., and Button, J. (1994) Binder Characterization and Evaluation Volume 3 : Physical Characterization, SHRP-A-369, Strategic Highways Research Program, National Research Council, Washington, DC
Bahia, H.U., and Anderson, D.A. (1992) Physical Harding of Asphalt Binders and Relation to Composition Parameter, Preprint of the 204th American Chemical Spciety National Meeting, Division of Fuel Chemistry, Vol.37, Nos.3 and 4
Boukir, A., Aries, E., Guiliano, M., Asia, L., Doumenq, P., and Mille, G., (2001) Subfractionation, Characterization and Photooxidation of Crude Oil Resins, Chemosphere, vol.43, pp.279-286.
Boukir A., Guiliano, M., Asia, L., Hallaoui, A.E., and Mille, G. (1998) A Fraction ot Fraction Study of Photo-Oxidation of BAL 150 Crude Oil Asphaltenes. Analusis, Vol.26, pp.358-364
Bullin, J.A., Glover, C.J., Davison, R.R., Lin, M.S., Chaffin, J., Liu, M., and Eckhardt, C. (1996). Development of Superior Asphalt Recycling Agents, DOE/AL/94460-1, U.S. Department of Energy Office of Industrial Technologies, Washington, DC
Carpenter, H.S., and Wolosick, R.J. (1980) Modifier Influence in the Characterization of Hot-Mix Recycled Material, Transportation Research Record:Journal of the Transportation Research Board, No.777, pp.15-25.
Christensen, D.W., and Anderson, D.A. (1992) Interpretation of Dynamic Mechanical Test Data for Paving Grade Asphalt Cements, Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.67-116
Churchill, E.V., Amirkhanian, S.N., and Burati Jr., J.L. (1995) HP-GPC Characterization of Asphalt Aging and Selected Properties, Journal of Material in Civil Engineer, Vol.7, pp.41-49
Corbett, L.W. (1969) Composition of Asphalt Based on Generic Fractionation, Using Solvent Deasphaltening, Elution-Adsorption Chromatography and Densimetric Characterization, Analytical Chemistry, Vol.41, No.4, pp.576-579.
Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, Vol. 20, pp. 417-437
Diefenderfer, S. (2006). Detection of Polymer Modifiers in Asphalt Binder, Virginia Department of Transportation, VTRC 06-R18,
Ferry, J.D. (1980). Viscoelastic Properties of Polymers, 3rd Ed., Wiley, New York.
Hajj, E.Y., Sebaaly, P.E., Kandiah, P. (2010) Evaluation of the Use of Reclaimed Asphalt Pavement in Airfield HMA Pavements, Journal of Transportation Engineering, vol.136, pp.186-189
Huang, B., Li, G., Vukosavljevic, D., Shu, X., and Egan, B.K. (2005) Laboratory Investigation of Mixing Hot-Mix Asphalt with Reclaimed Asphalt Pavement, Transportation Research Record:Journal of the Transportation Research Board, No.1929, pp.37-45.
Jennings, P.W., Pribanic, J.A., Raub, M.F., Smith, J.A., and Mendes, T.M. (1993) Advanced High Performance Gel Permeation Chromatography Methodology, SHRP-A-630, Strategic Highways Research Program, National Research Council, Washington, DC
Karlsson, R. and Isacsson, U. (2006) Material-Related Aspects of Asphalt Recycling—State-of-the-Art, Journal of Materials in Civil Engineering, Vol.18, pp.81-92.
Karlsson, R. and Isacsson, U. (2003) Investigations on Bitumen Rejuvenator Diffusion and Structural Stability, Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.463-501
Kim, S., Sholar, G.A., Byron, T., Jim, J. (2009) Performance of Polymer-Modified Asphalt Mixture with Reclaimed Asphalt Pavement, Transportation Research Record:Journal of the Transportation Research Board, No. 2126, pp.109-114.
Lamontagne, J., Dumas, P., Mouillet, V. and Kister, J. (2001) Comparison by Fourier Transform Infrared (FTIR) Spectroscopy of Different Ageing Techniques : Application to Road Bitumens, Fuel, Vol. 80, pp. 483-488.
Lesueur, D. (2009) The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen, Advances in Colloid and Interface Science, Vol.145, pp.42-82
Liao, M.C. (2007). Small and Large Strain Rheological and Fatigue Characterisation of Bitumen-Filler Mastics, Ph.D. Thesis, School of Civil Engineering, University of Nottingham, United Kingdom.
Liao, M.C., and Chen J.S. (2011) Zero Shear Viscosity of Bitumen-Filler Mastics, Journal of Materials in Civil Engineering, Vol.23, pp.1672-1680.
Lu, X., and Isacsson, U. (2002) Effect of Ageing on Bitumen Chemistry and Rheology, Construction and Building Materials, Vol.16, pp.15-22.
Masson J-F., Pelletier, L., Collins, P. (2001) Rapid FTIR Method for Quantification of Strene-Butadiene Type Copolymers in Bitumen, Journal of Applied Polymer Science, Vol.79, No.5, pp.1034-1041.
Mortazavi, M., Moulthrop, J.S. (1993) SHRP Materials Reference Library, SHRP-A-646, Strategic Highways Research Program, National Research Council, Washington, DC
Noureldin, A.S., and Wood, L.S. (1989) Variations in Molecular Size Distribution of Virgin and Recycled Asphalt Binders Associated with Aging, Transportation Research Record:Journal of the Transportation Research Board, No.1228, pp.191-197.
Petersen, J.C. (1984) Chemical Composition of Asphalt as Related to Asphalt Durability: State of the Art, Transportation Research Record:Journal of the Transportation Research Board, No.999, pp.13-30
Petersen, J.C., Robertson, R.E., Branthaver, J.F., Harnsberger, P.M., Duvall, J.J., Kim, S.S., Anderson, D.A., Christiansen, D.W., and Bahia, H.U. (1994) Binder Characterization and Evaluation Volume 1 , SHRP-A-367, Strategic Highways Research Program, National Research Council, Washington, DC
Pink, H.S., Merz, R.E. and Bosniack, D.S. (1980) Asphalt Rheology: Experimental Determination of Dynamic Moduli at Low Temperature, Journal of the Association of Asphalt Paving Technologists, Vol.49, pp.64-94
Roberts, F.J., Kandhal, P.S., Brown, E.R., Lee Dah-Yinn and Kennedy, T.W. (1985). Hot Mix Asphalt Materials, Mixture Design, and Construction, National Center for Asphalt Technology, NAPA Education Foundation, Maryland.
Shell Bitumen (2003) The Shell Bitumen Handbook, Shell Bitumen, UK
Shen, J., Serji, A., and Jennifer, A.M. (2007) Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement, Journal of Materials in Civil Engineering, Vol.19, pp.376-384.
Siddiqui, M.N. (2003) Alkylation and Oxidation Reactions of Arabian Asphaltenes, Fuel, Vol. 82, pp. 1323-1329.
Siddiqui, M.N., and Ali, M.F. (1999) Studies on the Behavior of the Arabian Asphalts, Fuel, Vol. 78, pp. 1005-1015.
Skoog, D.A., West, D.M., and Holler, F.J. (1996) Fundamentals of Analytical Chemistry, Saunders College Publishing, 7th edition, U.S., Ch.22
Skoog, D.A., Holler, F.J., and Crouch, S.R. (2007) Principle of Instrumental Analysis, Thomson Brooks/Cole, 6th edition, CA, Ch.16A
Valcke, E., Rorif, F., and Smets, S. (2009) Ageing of EUROBITUM Bituminised Radioactive Waste: An ATR-FTIR Spectroscopy Study, Journal of Nuclear Materials, Vol.393, pp.175-185.
Walczak, I. (2000) Determination des produits organiques d'alterations chimiques et radiochimiques du bitume, Applications aux enrobes bitumes. Thesis. Institut National des Sciences Appliquees de Lyon.
West, R., Kvasnak, A., Tran, N., Powell, B., and Turner, P. (2009) Testing of Moderate and High Reclaimed Asphalt Pavement Content Mixes: Laboratory and Accelerated Field Performance Testing at the National Center for Asphalt Technology Test Track, Transportation Research Record:Journal of the Transportation Research Board, No. 2126, pp.100-108.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊