跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏馬丁
研究生(外文):Floyd MartinWilliams
論文名稱:探討各種擋土牆施工法之二氧化碳排放量
論文名稱(外文):Investigation of CO2 Emission Associated with Soil Retaining Wall Constructions
指導教授:黃景川黃景川引用關係
指導教授(外文):Ching-Chuan Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:129
中文關鍵詞:土壤加勁填充物擋土牆單片式結構加勁擋土牆CO2排放量
外文關鍵詞:Reinforced soilinclusionmonolithic Structureretaining wallMechanically Stabilized Earth WallCO2 emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:1
為了結構物的永續發展,本文針對擋土牆的CO2排放量,蒐集重力式擋土牆、懸臂式擋土牆及加勁擋土牆(GRSR)在建築材料的製造過程、運輸過程及建造過程的排放資料;另外蒐集不同地區的排放係數,以便了解以上三個階段對於排放量的影響及如何選擇排放係數。

CO2排放總量對於三種擋土設施而言皆跟牆高有關,儘管建材及建造過程不同,懸臂式擋土牆跟加勁擋土牆的排放總量非常相近。牆高對於牆面上每平方公尺之CO2排放量的影響只在重力式跟懸臂式擋土牆展現出來。

建築材料的製造過程是CO2最主要的排放來源,尤以混凝土製程為甚;運輸及建造過程的排放量則相對不大。根據不同的建築環境、資料收集方法、建材處理方式及資料計算方法可以選出相應的最大及最小排放係數。

To encourage sustainable development for constructions, sustainable components such as energy consumption or emission of greenhouse gases needs to be quantified. This paper is an effort to examine the CO2 emission associated with soil retaining wall constructions. The parameters considered are material manufacture, transportation and installation and the assessment criterion is the quantification of CO2 emission. To account for various regions, minimum and maximum emission factors were used.
The objectives are to investigate CO2 emission associated with gravity wall, cantilever wall and Geosynthetic Reinforced Segmental Retaining Wall (GRSR) constructions, to understand the relative influence that the parameters have on CO2 emission and to justify the reason for selection of different emission factors. Total CO2 emission and wall height are directly related for the three types of walls. CO2 emission per square meter of wall and wall height are directly related for gravity and cantilever walls but for GRSR wall they remain consistent to each other.
Material manufacture has the most influence on CO2 emission compared to transportation and installation, and concrete played a major role in that influence. The cantilever and GRSR walls are relatively comparable despite differences in types of materials and construction procedures. The difference in minimum and maximum values for the emission factors relates to regional differences, specifically, data collection method, material processing method, and data calculation method.

TABLE OF CONTENTS
ABSTRACT……………………………………………………….…………………...I
摘要……………………………………………………………………………………..II
ACKNOWLEDGEMENTS……………………………………………………..……..III
TABLE OF CONTENTS……………………………………………………..………..IV
LIST OF TABLES…………………………………………………………………….VII
LIST OF FIGURES……………………………………………………………………XI
CHAPTER ONE INTRODUCTION………………………………………...…………1
1.1 Research Background - Overview of Soil Retaining Wall Construction…..…..1
1.2 Motivation of the Research – The Need for Sustainable Systems..……………2
1.3 Objective and Scope……………………………………………….…………...6
1.4 Research Method and Process……………………………………….…………8
1.5 Thesis Structure……………………………………………………...…...…….9
CHAPTER TWO LITERATURE REVIEW……………………………………..…….11
2.1 The Act of Civil Construction…………………………………………..……...11
2.2 Overview of Soil Retaining Wall Construction Practices – Past and Present….11
2.2.1 Gravity Retaining Walls…………………………………………….....13
2.2.2 Cantilever Retaining Walls………………………………………...…..15
2.2.3 The Use of Geosynthetics in Soil Retaining Structures………...……..18
2.2.4 Geosynthetic Reinforced Segmental Reinforced Wall (GRSR)……….21
2.3 Research Papers Comparing Retaining Walls………………………………….23
2.3.1 Reduction of CO2 by a Vegetated Wrap-around Geosynthetic
Reinforced Wall…………………………………………………….....24
2.3.2 The Estimation of CO2 Emission of Mechanically Stabilized
Earth Wall in a Life Cycle Assessment………………………………25
2.3.3 Reduction of Climate-damaging Gases in Geotechnical
Engineering by use of Geosynthetics………………………………….27
2.3.4 Embodied Energy and Gas Emissions of Retaining Wall Structures….29
2.3.5 Inventory Data and Case Studies for Environmental
Performance Evaluation of Concrete Structure Construction…………34
2.4 Other Relevant Research Data.…………………………………………………37
2.4.1 CO2 Emissions Data……………………………………………………37
2.5 CO2 Emissions in Manufacturing, Transportation and Handling
Geosynthetics…………………………………………………………………52
2.5.1 Methodology……………………………………………………………53
2.5.2 CO2 Emission Factors Polyolefin……………………………………….54
CHAPTER THREE MATERIALS USED FOR SOIL RETAINING WALLS….………58
3.1 Towards a Sustainable Method – Identifying Key Parameters.……….…………58
3.2 Wall Design and Specifications………………………….………………………60
3.2.1 Materials for Gravity Wall Construction………………………………..61
3.2.2 Materials for Cantilever Wall Construct.………………………………..64
3.2.3 Materials for Geosynthetic Reinforced Segmental Retaining
Wall Construction……………………………………………………..73
CHAPTER FOUR MODEL DEVELOPMENT AND COMPARISON……………..….79
4.1 Defining the Boundary of the Study.....................................................................79
4.2 Selecting the CO2 Emission Factors......................................................................80
4.2.1 Gravity and Cantilever Walls……..……………………………………..81
4.2.2 Geosynthetic Reinforced Segmental Retaining Wall ……….…………..83
4.3 Calculations to Determine the Total CO2 emissions..............................................86
4.3.1 CO2 Emissions for Gravity Wall………………………………………...86
4.3.2 CO2 Emission for Cantilever Wall………………………………………94
4.3.3 CO2 Emission for Geosynthetic Reinforced Segmental
Retaining Wall (GRSR)……..…………………………………………101
4.4 Summary and Interpretation of the Results…………………………………….108
4.4.1 Total CO2 Emission from Gravity, Cantilever & GRSR Walls…..…….108
4.4.2 CO2 Emission per Sq. Meter for Gravity, Cantilever & GRSR Walls….110
4.4.3 CO2 Emission as Percentage of Total Minimum and Maximum…….....111
4.4.4 Relative Influence of Parameters on Total CO2 Emission……………..112
4.4.5 Min and Max CO2 Emission and the Reason for Differences………….115
CHAPTER FIVE CONCLUSION...................................................................................118
5.1 Conclusion……………………............................................................................118
5.2 Recommendations for Future Study ..……………………………………….....121
REFERENCES………………………………….…………………………………..…..122


1.Akiyamaa, M., Tsugea, T., & Doi, Y. ( 2003). Environmental Life Cycle Comparison of Polyhydroxyalkanoates Produced from Renewable Carbon Resources by Bacterial Fermentation. Polymer Degradation and Stability , 183–194.
2.Alarcon, A. (2003). Embodied Energy and CO2 Coefficients for New Zealand Building Materials. Wellington, New Zealand: Centre for Building Performance Research.
3.Augenbroe, G., & Pearce, A. R. (1998). Sustainable Construction in the United States of America: A perspective to the year 2010. Atlanta, Ga: Georgia Institute of Technology.
4.Bartuska, T. J. (2007). The Built Environment: A Collaborative Inquiry Into Design and Planning. . New Jersey: John Wiley & Sons.
5.Bassioni, G. (2012). A Study Towards ‘Greener Construction. Applied Energy , 132-137.
6.Bathurst, R. J., & Simac, M. R. (1994). Geosynthetic Reinforced Segmental Retaining Wall Structures in North America. . Fifth Annual Conference on Geotextiles, Geomembranes and Related Products, (pp. 1-41). Singapore.
7.BMI, B. M. (2002). Toward a Sustainable Cement Industry: An Independent Study Comissioned by The World Business Council for Sustainable Development. Columbus, Ohio: WBCSD.
8.Boustead, I. (April 1999). Ecoprofiles of Plastics and Related Intermediates-Methodology. Brussels, Belgium: The Association of Plastics Manufacturers in Europe (APME).
9.BS-EN 1008. (2002). Mixing water for concrete - Specification for sampling, testingand assessing the suitability of water, including water recoveredfrom processes in the concrete industry, as mixing water foF concrete. Brussels: EUROPEAN COMMITTEE FOR STANDARDIZATION.
10.Buchanan, A. H., & Honey, B. G. (1994). Energy and Carbon Dioxide Implications of Building Construction. Energy and Buildings , 205-217.
11.Buchanana, A. H., & Levine, S. B. (1999). Wood-based Building Materials and Atmospheric Carbon Emissions. Environmental Science & Policy , 427-437.
12.Chau, C. K., Hui, W. K., & Powell, G. (2012). Assessment of CO2 Emissions Reduction in High-rise Concrete Office Buildings Using Different Material Use Options. Resources, Conservation and Recycling , 22-34.
13.Chau, C., Yik, F., Hui, W., Liu, H., & Yu, H. (2007). Environmental Impacts of Building Materials and Building Services Components for Commercial Buildings in Hong Kong. Journal of Cleaner Production , 1840-1851.
14.Cherret, N., Barrett, J., Clemett, A., Chadwick, M., & Chadwick, M. (2005). Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester. Stockholm: Stockholm Environment Institute.
15.Clayton, C. R., Milititsky, J., & Woods, R. I. (1996). Earth Pressure and Earth-Retaining Structures. London: Blackie Academic & Professional.
16.Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable Development and Climate Change Initiatives. Cement and Concrete Research , 115-127.
17.Das, B. M. ((2007). Principles of Foundation Engineering. Ontario, Canada: Chris Carson.
18.Dimoudi, A., & Tompa, C. (2008). Energy and Environmental Indicators Related to Construction of Office Buildings. Resource, Conservation and Recycling , 86-95.
19.Elias, V., & Christopher, B. R. (2001). Mechanically Stabilized Earth Walls and ReinforcedSoil Slopes Design & Construction Guidelines. Washington D. C.: U.S. Department of Transportation - Federal Highway Administration.
20.EPA, U. S. (2010). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008. Washington DC, USA: National Service Center for Environmental Publications (NSCEP).
21.Flower, D. J., & Sanjayan, J. G. (2007). Green House Gas Emissions due to Concrete Manufacture. Int J LCA 12 (5) , 282-288.
22.Fluet, J. E. (1987). Geotextile Testing and the Design Engineering. ASTM Symposium on Geotextile Testing and the designer engineer.
23.Gangolells, M., Casals, M., Gasso, S., Forcada, N., Roca, X., & Fuertes, A. (2009). A Methodology for Predicting the Severity of Environmental Impacts Related to the Construction Process of Residential Buildings. Building and Environment , 558-571.
24.Gironi, F., & Piemonte, V. (2011). Bioplastics and Petroleum-based Plastics: Strength and Weaknesses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects , 1949-1959.
25.Gonzalez, M., & Navarro, J. G. (2006). Assessment of the Decrease of CO2 Emissions in the Construction Field Through the Selection of Materials: Practical Case Study of Three Houses of Low Environmental Impact. Building and Environment , 902–909.
26.Graedel, T. E., & Allenby, B. (1995). Industrial Ecology. Englewood Cliffs, N.J.: Prentice-Hall.
27.Guggemos, A. A., & Horvath, A. (2005). Comparison of Environmental Effects of Steel and Concrete Framed Bildings. Journal of infrastructure Systems , 93-101.
28.Hammond, G., & Jones, C. (2008). Inventory of (Embodied) Carbon and Energy (ICE) Version 1.6a. Bath, UK: Department of Mechanical Engineering, University of Bath.
29.Harding, K., Dennis, J., von Blottnitz, H., & Harrison, S. (2007). Environmental Analysis of Plastic Production Processes: Comparing Petroleum-based Polypropylene and Polyethylene with Biologically-based poly-β-hydroxybutyric Acid using Life Cycle Analysis. Journal of Biotechnology , 57-66.
30.Heerten, G. (2012). Reduction of Climate-damaging Gases in Geotechnical Engineering Practice Using Geosynthetics. Geotextiles and Geomembranes , 43-49.
31.Hendrickson, C., & Horvath, A. (2000). Resource Use and Environmental Emissions of U.S. Construction Sector. Journal of Construction Engineering and Management , 38-44.
32.Holtz, R. E. (1998). Geosynthetic Design and Construction Guidelines. McLean, VA: National Highway Institute - Federal Highway Administration.
33.Inui, T., Chau, C., Soga, K. M., Nicolson, D., & O’Riordan, N. M. (2011). Embodied Energy and Gas Emissions of Retaining Wall Structures. Journal of Geotechnical and Geoenvironmental Engineering , 958-967.
34.Kang, G., & Kren, A. (2007). Structural Engineering Strategies Towards Sustainable Design. San Francisco, CA: Sustainable Design Committee of the Structural Engineers Association of Northern California (SEAONC).
35.Kawai, K., T., S., Kobayashi, K., & Sano, S. (2005). Inventory Data and Case Study for Environmental Performance Evaluation of Concrete Structure Construction. Journal of Advanced Technology , 435-456.
36.Kim, S.-H., & Chae, C.-U. (2009). A Study on the Estimation Method of the Environmental Load Intensity for Analyzing GHG Reduction Effect of Han-Ok. Green Technology Eco Life & Sustainable Architecture for Cities of Tomorrow , 251-257.
37.Kurdikar, D., Paster, M., Gruys, K., Fournet, L., Gerngross, T., & Slater, S. (2001). Greenhouse Gas Profile of a Plastic Material Derived from a Genetically Modified Plant. Journal of Industrial Ecology , 107-122.
38.Lee, H. H., & Chan, T. J. (2010). Reduction of CO2 by a Vegetated Wrap-around Geosynthetic Reinforced Wall. The First International GSI-Asia Geosynthetics Conference (pp. 155-157). Taichung, Taiwan.: National Pintung University of Science and Technology.
39.Li, X., Zhu, Y., & Zhang, Z. (2010). An LCA-based Environmental Impact Assessment Model for Construction Process. Building and Environment , 766-775.
40.Marceau, M. L. (2007). Life Cycle Inventory of Portland Cement Concrete. Skokie, Illinois: Portland Cement Association.
41.Margolis, N., & Brindle, R. (2000). Energy and Environmental Profile of the U.S. Iron and Steel Industry. USA: U.S. Department of Energy (DOE).
42.Mehta, P. K. (2006). Concrete: Microstructure, Properties, and Materials. New York: McGraw Hill.
43.Mohammadian, M., Allen, N., Edge, M., & Jones, K. (1991). Environmental Degradation of Poly(ethylene Terephthalate). Textile Research Journal , 690-696.
44.NAVFACENGCOM. (1986). Foundations & Earth Structures. Philadelphia, PA: Naval Publications and Forms Center.
45.Newman, M. P. (1976). Standard Cantilever Retaining Walls. . USA: McGraw-Hill.
46.Norgate, T. E., Jahanshahi, S., & Rankin, W. J. (2007). (2007). Assessing the Environmental Impact of Metal Production Prodesses. . Journal Of Cleaner Production , 838-848.
47.Patel, M. (2003). Cumulative Energy Demand (CED) and Cumulative CO2 Emissions for Products of the Organic Chemical Industry. Energy , 721-740.
48.Ramesh, T., Prakash, R., & Shukla, K. (2010). Life Cycle Energy Analysis of Buildings: An Overview. Energy and Buildings , 1592-1600.
49.Seo, S. &. (2001). Estimation of CO2 Emissions in Life Cycle of Residential Buildings. Journal of Construction Engineering and Management , 414-418.
50.Shin, S., Tae, S., Woo, J., & Roh, S. (2011). The Development of Environmenntal Load Evaluation of a Standard Korean Apartment House. Renewable and Sustainable Energy Reviews , 1239–1249.
51.Shukla, S. K. (2002). Geosynthetics And Their Applications. London: Thomas Telford Publishing, Thomas Telford Ltd.
52.Simpson, B., & Tatsuoka, F. (2008). Geotechnics: The Next 60 Years. Ge´otechnique , 357–368.
53.Smith, G., & Barker, R. (1995). Life Cycle Analysis of a Polyester Garment. Resources, Conservation and Recycling. 233-249.
54.Soga, K. (2011). Infrastructure Geotechnics and Earthquake Geotechnics Towards Global Sustainability. In L. Susumu, Geotechnical, Geological, and Earthquake Engineering (pp. 59-74). Istanbul, Turkey: Springer Netherlands.
55.Stepanski, M., & Rutti, A. (2003, February). Improving theProduction Process of the Most Popular Man-made Fibre. Sulzer Technical Review , pp. 4085-4087.
56.Su, N. M., & Liu, F. S. (2002). Effects of Wash Water and Underground Water on Properties of Concrete. Cement and Concrete Research , 777-782.
57.Suzuki, M., & Oka, T. (1998). Estimation of Life Cycle Energy Consumption and CO2 Emissions of Office Buildings in Japan. Energy and Buildings , 33-41.
58.Tabone, M., Cregg, J., Beckman, E., & Landis, A. (2010). Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environ. Sci. Technol , 8264–8269.
59.Tae, S., Baek, C., & Shin, S. (2011). Life cycle CO2 Evaluation on Reinforced Concrete Structures with High Strength Concrete. Environmental Impact Assessment Review , 253-260.
60.Turkenburg, W. C. (1997). Sustainable Development, Climate Change, and Carbon Dioxide Removal (CDR). Energy Conversion and Management , S3-S12.
61.Walker, F. R. (1989). Walher's Building Estimator's Reference Book. Lisle, IL: Frank R. Walker Company.
62.Wallhagen, M., Glaumann, M., & Malmqvist, T. (2011). Basic Building Life Cycle Calculations to Decrease Contribution to Climate Change - Case Study of an Office Building in Sweden. Building and Environment , 1863-1871.
63.Wang, C.-f., Lin, H.-t., Li, T.-h., Wang, J.-h., & Su, T.-c. .. (2009). The Estimation of CO2 Emission of Mechanically Stabilized Earth Wall in a Life Cycly Assessment. Tainan, Taiwan: Dept. of Architecture, Cheng Kung University.
64.WMO, W. M. (2003). Climate into the 21st Century. Cambridge, UK: Cambridge University Press.
65.Wu, X., Zhang, Z., & Chen, Y. (2005). Study of the Environmental Impacts Based on the ‘‘green tax’’— Applied to Several Types of Building Materials. Building and Environment , 227–237.
66.Yan, H., Shen, Q., Fan, L. C., Wang, Y., & Zhang, L. (2010). Greenhouse Gas Emissions in Building Construction: A Case Study of One Peking in Hong Kong. Building and Environment , 949–955.
67.Zimmermann, M., Althaus, H.-J., & Haas, A. (2005). Benchmarks for Sustainable Construction: A contribution to Develop a Standard. Energy and Buildings , 1147-1157.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top