跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖正傑
研究生(外文):Cheng-JieLiao
論文名稱:岩石中空試體之三軸及剪力行為與其在岩石工程之應用
論文名稱(外文):Mechanical Behavior of Hollow Cylinder Rock Specimens under Triaxial and Ring Shear Tests and Its Application
指導教授:李德河李德河引用關係吳建宏吳建宏引用關係
指導教授(外文):Der-Her LeeDer-Her Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:190
中文關鍵詞:中空三軸試驗降伏曲面注儲壓力環形剪力試驗應力路徑滑動機制
外文關鍵詞:Hollow Cylinder TestYield SurfaceInjection PressureRing Shear TestStress PathSliding Mechanism
相關次數:
  • 被引用被引用:2
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為解決傳統三軸試驗無法模擬岩石在複雜三維應力之作用與傳統岩石直接剪力試驗無法取得節理面岩石之真實殘餘剪力強度等問題,本研究發展出適用於岩石試體的中空三軸試驗與環形剪力試驗的設備與試驗方法,以獲得岩石在三維應力與殘餘狀態的破壞準則。
在中空三軸試驗方面,應用於探討CO2地質封存構造之蓋層與儲存層岩石在三維應力下的強度特性,並建立其三維度的降伏曲面。試驗結果發現,魚藤坪砂岩、六重溪層砂岩與崁下寮層泥岩的降伏曲面在八面體面上呈圓角三角形,顯示試體破壞時的軸差應力與偏差角度呈非線性關係。在破壞準則分析中,Hoek & Brown破壞準則及Kim & Lade破壞準則皆能描述岩石試體在低圍壓與高圍壓的強度特性,但偏差角度對軸差應力的影響,僅Kim & Lade破壞準則能表現,且Kim & Lade降伏曲面與試驗結果較相似,同為圓角三角形。除此之外,將此降伏曲面用於評估儲存層岩石受到三維應力作用下的最大可容許注儲壓力,可作為CO2地質封存時控制注儲壓力參考,降低發生岩層破裂與斷層錯動的風險。
在環形剪力試驗方式,除應用於探討節理面岩石的殘餘強度外,更利用動態應力的施加,模擬地震力對滑動面岩石的作用,探討其滑動機制。試驗結果顯示,靜態環形剪力試驗所建立之破壞準則適用於動態試驗中,當動態作用力超過滑動面岩石的剪力阻抗時,應力路徑將沿著破壞包絡線移動,此時剪位移迅速增加,剪動速度最大達5.12m/min,此速度足以造成岩坡產生滑動。由此說明,集集地震造成草嶺地滑的機制為,滑動面所承受的地震動態應力超過所能抵抗的剪應力,造成滑動塊體產生高速的滑動後,地滑因此產生。
綜合以上,本研究所發展的岩石中空三軸試驗與環形剪力試驗皆能克服傳統試驗方法的限制,探討岩石在三維應力條件下與殘餘狀態時的強度特性,對於解決現階段所面臨到的岩石力學問題能有相當大的幫助。
Conventional test has a lot of limitations. The effect of complex three-dimensional stress on rock cannot be simulated by triaxial test; and the true residual shear strength at rock joint surface cannot be obtained by direct shear test. Therefore, suitable methods and equipments for hollow cylinder triaxial test and ring shear test for rock specimen are developed in this study to obtain the failure criteria of rocks in three-dimensional stress and residual state.
Hollow cylinder triaxial test is applied to the cover and storage layers in CO2 sequestration to probe the strength properties under three-dimensional stress and establish three-dimensional yield surfaces. The results show that the yield surfaces of Yutengping sandstone, Liuchungsi sandstone and Kanhsialiao mudstone appear as smoothed triangle on octahedral plane, indicating a nonlinear relationship between the deviator stress and angle of deviation at the moment of failure. In failure criteria analysis, both Hoek-Brown and Kim-Lade failure criteria could present the strength properties of rocks under low and high confining pressure. However, Kim-Lade failure criterion could also express the influence of the angle of deviation to deviator stress, and its yield surface (which is a smoothed triangle) is more similar to test results. The yield surface could then be used to assess the maximum allowable injection pressure of storage layer under three-dimensional stress as the reference value for injection pressure in CO2 sequestration to reduce the risk of rock failure.
In addition to using ring shear test to probe the residual strength at rock joint surface, it is also used to simulate the effect of seismic forces on rock sliding surface to probe the sliding mechanism by the application of dynamic stresses. Test results show that the failure criterion established in static ring shear test is applicable in dynamic test. As the dynamic forces surpasses the shear resistance of sliding surface, shear path moves along failure envelope. At this moment, shear displacement increases rapidly to a maximum rate of 5.12m/min, which is enough to cause sliding failure on rock slope. This phenomenon explains the mechanism of Tsaoling landslide which was caused by Chi-Chi earthquake, which was happening when the dynamic (seismic) stresses on the sliding surface surpassed the resisting shear strength, resulted in a high-speed sliding.
As the conclusion, the hollow cylinder triaxial test and ring shear test developed in this research could overcome the limitation faced in conventional methods, to probe the strength properties of rock under three-dimensional stress and residual state, and provide a great help in solving current rock mechanics problems.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XVIII
符號 XX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法與流程 3
1-3 論文內容 6
第二章 文獻回顧 7
2-1 中空三軸試驗相關研究回顧 7
2-2 中空三軸試驗原理及應力計算方式 12
2-3 Haigh-Westergard主應力空間 16
2-4 常見岩石破壞準則 19
2-4-1 Mohr-Coulomb破壞準則 19
2-4-2 Hoek-Brown破壞準則 20
2-4-3 Kim and Lade破壞準則 21
2-5 CO2封存減量 22
2-5-1 地質封存技術 27
2-5-2 地質封存環境的種類 30
2-5-3 國內外發展現況 32
2-5-4 台灣適合地質封存場址 36
2-6 殘餘剪力強度與穩定狀態 49
2-6-1 殘餘剪力強度 49
2-6-2 穩定狀態 51
2-7 環形剪力試驗之相關研究回顧 52
2-7-1 土壤環形剪力試驗 52
2-7-2 岩石環形剪力試驗 59
第三章 岩石中空三軸試驗 66
3-1 設備發展過程 66
3-2 試驗設備介紹 70
3-3 試驗方法與流程 77
3-3-1 微型中空試體製作方法 77
3-3-2 試體組裝流程 79
3-3-3 應力加載控制方程 80
3-3-4 應力路徑規劃 80
3-4 岩石中空三軸試驗之應用 83
3-4-1 試驗材料取樣位置與基本性質 87
3-4-2 中空三軸試驗結果 96
3-4-3 三維應力破壞準則與降伏曲面之建立 104
3-4-4 儲存層注儲壓力評估 121
第四章 岩石環形剪力試驗 129
4-1 試驗設備 129
4-2 試驗方法 135
4-2-1 靜態環形剪力試驗 135
4-2-2 動態環形剪力試驗 136
4-3 岩石環形剪力試驗應用與結果 142
4-3-1 節理面岩石剪力強度探討 142
4-3-2 地震力引致岩坡滑動機制探討 155
第五章 結論與建議 174
5-1 結論 174
5-2 建議 176
參考文獻 177
1.工業技術研究院,「二氧化碳再利用技術與地質封存潛能評估計畫」,經濟部能源局委託研究計畫,2007。
2.日本京都大學防災研究所斜面災害研究中心網站,http://landslide.dpri.kyoto-u.ac.jp。
3.台灣電力公司網站,http://www.taipower.com.tw/。
4.行政院環境保護署網站,http://www.epa.gov.tw/。
5.行政院經濟部能源局,「能源科技研究發展白皮書」,台北 2007。
6.行政院經濟部,「永續能源政策綱領(核定本)」,台北,2008。
7.杜振成,「影像處理方法運用於岩石節理面強度預估之初步研究」,國立成功大學土木工程研究所碩士論文,2000。
8.呂明達、宣大衡、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,鑛冶,第五十二卷,第三期,第154–161頁,2008。
9.李小春、小出仁、大隅多加志,「二氧化碳地中隔離技術及其岩石力學問題」,岩石力學與工程學報,第22 卷,第6 期,第989–994頁,2003。
10.李正楠,「草嶺崩坍地受震行為初探」,國立臺灣大學土木工程學研究所碩士論文,2001。
11.李德河,林宏明,蔡百祥,「草嶺與九份二山重模土壤之力學特性探討」,2002岩盤工程研討會論文集,新竹,第81-87頁,2002。
12.李德河,林宏明,葉信宏,「利用中空三軸試驗探討泥岩材料之力學特性」,中國土木水利工程學刊,第十七卷,第二期,第217-226頁,2005。
13.李錫堤、洪如江、林銘郎、蔡龍珆,「草嶺崩塌地工程地質調查與穩定性評估」,財團法人中興工程顧問社,專題研究報告,1993。
14.何信昌,「五萬分之一臺灣地質圖說明書」,圖幅第十二號-苗栗,經濟部中央地質調查所,1994。
15.何信昌、謝凱旋、高銘健、陳華玟,「五萬分之一台灣地質圖及說明書–新化圖幅」,第五十號,經濟部中央地質調查所出版,共75頁,2005。
16.何春蓀,「臺灣地質概論-臺灣地質圖說明書」,經濟部中央地質調查所,2006。
17.余嘉凌,「吊神山地區水文與地質特性之相關性研究」,國立中央大學應用地質研究所碩士論文,2004。
18.吳榮章、范振暉、宣大衡、余輝龍、吳健一、陳大麟、洪克銘,「台灣進行二氧化碳捕獲地下封存之初步構想」,化石燃料排放二氧化碳之捕捉儲存與利用技術研討會論文,財團法人中技社,2006。
19.汪蘭君,「鐵砧山現地應力場與斷層再活動分析」,國立中央大學應用地質研究所碩士論文,2010。
20.林朝棨,「臺灣新志地質篇」,中華叢書出版委員會印行,第147-47頁,1954。
21.范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」,第二屆資源工程研討會論文集,台南,第278–283頁,2005。
22.范振暉、宣大衡,「從鐵砧山注儲之經驗談二氧化碳封存」,地質,經濟部中央地質調查所,第26卷,第2期,第48–50頁,2007。
23.姜禮仙,「岩石材料在主應力軸旋轉下之力學行為研究」,國立成功大學土木工程系所碩士論文,1993。
24.宣大衡、范振暉,「二氧化碳的捕獲與封存」,地質,第26卷,第2期,第40-47頁,2007。
25.宣大衡、范振暉,「二氧化碳地質封存所面對之問題」,工業污染防治,第102期,第109-125頁,2007a。
26.俞旗文,「二氧化碳捕獲與封存」,水利土木科技資訊季刊,第41期,第27-32頁,2008。
27.許思聰,「在主應力空間中木山層砂岩之力學行為研究」,國立成功大學土木工程系所碩士論文,1996。
28.張憲卿,「五萬分之一臺灣地質圖幅「大甲圖幅」及說明書」,圖幅第十七號-大甲,經濟部中央地質調查所,1994。
29.黃鑑水,何信昌,劉桓吉,「台灣中部草嶺地區之地質與山崩」,經濟部中央地質調查所彙刊,第2號,第95-111頁,1983。
30.經濟部中央地質調查所網站,http://www.moeacgs.gov.tw。
31.葉信宏,「以中空三軸試驗探討泥岩材料之力學行為研究」,國立成功大學土木工程系所碩士論文,1999。
32.劉桓吉,李錦發,紀宗吉,「五萬分之一臺灣地質圖幅「雲林圖幅」及說明書」,圖幅第三十八號-雲林,經濟部中央地質調查所,2004。
33.劉致育,「利用中尺度震測系統來探討二氧化碳封存場址」,國立中央大學地球物理研究所碩士論文,2008。
34.謝文徨,「以不同應力路徑探討木山層砂岩在八面體面上之力學行為研究」,國立成功大學土木工程系所碩士論文,1995。
35.藍洋峻,「膠結不良砂岩之殘餘強度試驗與解析」,國立交通大學土木工程系所碩士論文,2005。
36.嚴國禎,「錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究」,國立台灣大學土木工程研究所碩士論文,1999。
37.Alsayed, M. I., “Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders, International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp.355-366, 2002.
38.Anderson, E. M., “The Dynamics of Faulting and Dyke Formation, 2nd ed., Oliver & Boyd, Edinburgh, 1951.
39.Barton, N., Choubey, V., “The shear strength of rock joints in theory and practice, Rock Mechanics, Vol. 10(1-2), pp.1-54, 1977.
40.Bert, M., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.), “IPCC special report on carbon dioxide capture and storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.1-442, 2005.
41.Bishop, A.W., Green, G.E., Garga, V.K., Andresen, A., and Brown, J.D., “A new ring shear apparatus and its application to measurement of residual strength, Geotechnique, Vol. 21, pp.273-328, 1971.
42.Bonham, L. C., “Migration of hydrocarbon in compacting basins,’ American Association of Petroleum Geologists Bulletin, Vol. 64(4), pp.549-564, 1980.
43.Bromhead, E. N., “A simple ring shear apparatus, Ground Engineering, Vol. 12(5), pp. 40-44, 1979.
44.Broms, B.B., and Casbarian, A.O., “Effects of rotation of the principal stress axes and of the intermediate principal stresses on the shear strength, Proceedings of the Sixth International Conference on Soil Mechanics and Foundation Engineering, Montreal, Vol. 1, pp.179-183, 1965.
45.Brown, E. T., “Rock characterization, testing & monitoring: ISRM suggested methods, Published for the Commission on Testing Methods, International Society for Rock Mechanics, Pergamon Press, 1981.
46.Byerlee, J. D., “Friction of rocks, Pure and Applied Geophysis, Vol. 116, pp.615-629, 1978.
47.Cameron-Cole, “Air Dispersion Modeling of well blowout and pipeline rupture scenarios Salt creek field, in Environmental Assessment Howell Petroleum Phase III/IV CO2 Enhanced Oil Recovery Project: Salt Creek Oil Field, RETEC, et al., Editors. 2005, U.S. Department of the Interior; Bureau of Land Management Casper Field Office.
48.Chen, W.F., and Han, D.J., Plasticity for structural engineers, Springer-Verlag, Hong Kong Limited., pp. 26-70, 1991.
49.Chigira, M., Wang, W.N., Furuya, T., and Kamai, T., “Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan, Engineering Geology, Vol. 68, pp.259-273, 2003.
50.Cooling, L.F., and Smith, D.B., “The shearing resistance of soils, Journal of the Institution of Civil Engineers, Vol. 3, pp.333-343, 1936.
51.Coulomb, C.A., “Essai sur une application des regles des maximums et minimums a qualques problemes de statique relatifs a l’architecture, Memoirs. Academie. Royal. des Sciences, Paris, Vol. 3, pp.38, 1776.
52.Davison, J., Freund, P., and Smith, A., “Putting Carbon Back into the Ground, Report produced by the IEA Greenhouse Gas R&D Programme, pp. 1-28, 2001.
53.de Toledo, P. E. C., and de Freitas, M. H., “Laboratory testing and parameters controlling the shear strength of filled rock joints, Geothchnique, Vol. 43(1), pp.1-19, 1993.
54.Duncan, J. M., and Wright, S. G., “Soil strength and slope stability, John Wiley & Sons, Hoboken, NJ, 2005.
55.Gens, A., and Potts, D. M., “Formulation of quasi-axisymmetric boundary value problems for finite element analysis, Engineering Computations, Vol. 1(2), pp.144-150, 1984.
56.Geuze, E.C.W.A., and Tan T.K., “The mechanical behaviour of clays, Proceeding of the second International Conference on Rheology, Oxford, England, pp.247-259, 1953.
57.Gunter, W. D., Mavor, M. J., and Robinson, J. R., “CO2 storage and enhanced methane production: Field testing at Fenn-Big Valley, Alberta, Canada, with application, Greenhouse Gas Control Technologies, Vol. 1, pp. 413-421, 2005.
58.Hight, D.W., Gen, A., and Symes, M.J., “The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils, Geotechnique, Vol. 33(4), pp.355-383, 1983.
59.Hoek, E., and Brown, E.T., Underground excavations in rock, The Institution of Mining and Metallurgy, London, 1980.
60.Hoskins, E.R., “The failure of thick-walled hollow cylinders of isotropic rock, International Journal of Rock Mechanics and Mining Science, Vol. 6, pp.99-125, 1969.
61.Hovorka, S. D., Doughty, C., and Holtz, M. H., “Testing efficiency of storage in the subsurface: Frio brine pilot experiment, Greenhouse Gas Control Technologies, Vol. 2, pp.1361-1366, 2005.
62.Http://www.co2crc.com.au/
63.Hung, J. H., Ma, K. F., Wang, C. Y., Ito, H., Lin, W. and Yeh, E. C., “Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project, Tectonophysics, Vol. 466, pp.307-321, 2009.
64.Hungr, O., and Morgenstern, N.R., “High-velocity ring shear tests on sand, Geotechnique, Vol. 34, pp.415-421, 1984.
65.IEA Greenhouse Gas R&D Report [EB/OL], 2002. http://www.ieagreen.orguk/.
66.Ishihara, K., and Yasuda, S., “Sand liquefaction in hollow cylinder torsion under irregular excitation, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 15(1), pp.45-59, 1975.
67.Jamal, A.K., “Triaxial extension tests on hollow cylinder sand specimens, Canadian Geotechnical Journal, Vol. 8(1), pp.119-133, 1971.
68.Kamai, T., “Monitoring the process of ground failure in repeated landslides and associated stability assessments, Engineering Geology, Vol. 50, pp.71-84, 1998.
69.Kikuta, K., Hongo, S., Tanase, D., and Ohsumi, T., “Field test of CO2 injection in Nagaoka, Japan, Greenhouse Gas Control Technologies, Vol. 2, pp.1367-1372, 2005.
70.Kim, M.K., and Lade, P.V., “Modeling rock strength in three dimensions, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, Vol. 21(1), pp.21-33, 1984.
71.Kutter, H. K., “Rotary shear testing of rock joints, In Advance in rock Mechanics: Proceeding of the Third Congress of the International Society for Rock Mechanics, Denver, Vol. 12, pp.254-262, 1974.
72.Lade, P.V., “Elasto-plastic stress-strain theory for cohesionless soil with curved yield surface, International Journal of Solids and Structures, Vol. 13, pp.1019-1035, 1977.
73.Lade, P.V., and Asce, A.M., “Prediction of undrained behavior of sand, Journal of the Geotechnical Engineering Division, ASCE, Vol. 104(6), pp.721-735, 1978.
74.Lade, P.V., and Asce, A.M., “Three-dimensional failure criterion for concrete, Journal of the Geotechnical Engineering Division, ASCE, Vol. 108(5), pp.850-863, 1982.
75.Lade, P.V., Asce, A.M., and Musante, H.M., “Three-dimensional behavior of remolded clay, Journal of the Geotechnical Engineering Division, ASCE, Vol. 104(2), pp.193-209, 1978.
76.Lambe, T.W., “Methods of estimating settlement, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90(SM5), pp.47-74, 1964.
77.Lee, D. H., Juang, C. H., Chen, J. W., Lin, H. M., and Shieh, W. H., “Stress paths and mechanical behavior of a sandstone in hollow cylinder tests, International Journal of Rock Mechanics and Mining Sciences, Vol. 36(7), pp.857-870, 1999.
78.Lee, D.H., Juang, C.H., and Lin, H.M., “Yield Surface of Mu-San Sandstone by Hollow Cylinder Tests, Rock Mechanics and Rock Engineering, Vol. 35, pp.205-216, 2002.
79.Lee, D.H., Juang, C.H., Lin, H.M., and Yeh, S.H., “Mechanical behavior of Tien-Liao mudstone in hollow cylinder tests, Canadian Geotechnical Journal, Vol. 39, pp.744-756, 2002a.
80.Liao, C. J., Chen, P. Y., Lee, D.H., Wu, J. H., and Lin, H. M., “Investigating the shear mechanics of Kuan-Miao sandstone using undrained ring shear test, 42nd US Rock Mechanics Symposium and 2nd U.S.-Canada Rock Mechanics Symposium, San Francisco, ARMA 08-286, 2008.
81.Lupini, J.F., Skinner, A.E., and Vaughan, P.R., “The drained residual strength of cohesive soils, Geotechnique, Vol. 31, pp.181-213, 1981.
82.Meehan, C.L., Brandon, T.L., and Duncan, J.M., “Measuring drained residual strengths in the Bromhead ring shear, Geotechnical Testing Journal, Vol. 30, pp.466-473, 2007.
83.Mohr, O., “Welche umstande bedingen die elastizitatsgrenze und den bruch eines materiales?, Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, pp.1524-1530, 1572-1577, 1990.
84.Ohoka, M., Funato A., and Takahashi Y., “Tensile test using hollow cylindrical specimen, International Journal of Rock Mechanics and Mining Science, Vol. 34(3-4), paper No. 088, 1997.
85.Preston, C., Monea, M., Jazrawi, W., Brown, K., Whittaker, S., White, D., Law, D., Chalaturnyk, R., and Rostron, B., “IEA GHG Weyburn CO2 monitoring and storage project, Fuel Processing Technology, Vol. 86, pp.1547-1568, 2005.
86.Poulos, S. J., “The steady state of deformation, ASCE, GE, Vol. 107(5), pp.553-562, 1981.
87.Riddiford, F., Wright, I., Bishop, C., Espie, T., and Tourqui, A., “Monitoring geological storage the In Salah Gas CO2 storage project, Greenhouse Gas Control Technologies, Vol. 2, pp.1353-1359, 2005.
88.Saada, A.S., and Townsend, F.C., “State of the art: Laboratory strength testing of soils, Laboratory Shear Strength of Soil, ASTM. STP 740, R. N. Yong and F. C. Townsend, Eds., American Society for Testing and Materials, pp. 7–77, 1981.
89.Sassa, K., “A new intelligent type dynamic loading ring shear apparatus, Landslide News, Vol. 10, pp.1-33, 1997.
90.Sassa, K., Fukuoka, H., Wang, F.W., and Wang, G.H., “Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses, Landslides, Vol. 2, pp.125-134, 2005.
91.Sassa, K., Fukuoka, H., Wang, G. H., and Ishikawa, N., “Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics, Landslides, Vol. 1(1), pp.7-19, 2004.
92.Schilling, F., Borm, G., Würdemann, H., Möller, F., and Kühn, M., “Status Report on the First European on-shore CO2 Storage Site at Ketzin (Germany), Energy Procedia, Vol. 1, pp.2029-2035, 2009.
93.Skempton, A. W., “Long-term stability of clay slopes, Geotechnique, Vol. 14(2), pp.75-101, 1964.
94.Skempton, A. W., “Slope stability of cuttings in brown London clay, Proc. 9th Int. Conf. on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 3, pp.261-270, 1977.
95.Skempton, A. W., and Petley, D. J., “The Strength along Structural Discontinuities in Stiff Clays, Proc. Geotechnical Conf. Oslo, Vol. 2, pp.29-46, 1967.
96.Sminchak, J., Gupta, N., Byrer, C., and Bergman, P., “Issues related to seismic activity induced by the injection of CO2 in deep saline aquifers, Journal of Energy and Environmental Research, Vol. 2(1), pp.32-46, 2002.
97.Stark, T.D., Eid, H.T., “Drained residual strength of cohesive soils, Journal of Geotechnical Engineering, Vol. 120, pp.856-871, 1994.
98.Stark, T. D., and Vettel, J. J., “Bromhead Ring Shear Test Procedure, Geotechnical Testing Journal, Vol. 15(1), pp.24-32, 1992.
99.Streit, J. E., and Hills, R. R., “Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock, Energy, Vol. 29, pp.1445-1456, 2004.
100.Talesnick, M., and Shehadeh, S., “The effect of water content on the mechanical response of a high-porosity chalk, International Journal of Rock Mechanics & Mining Sciences, Vol. 44, pp.584-600, 2007.
101.Tang, C.L., Hu, J.C., Lin, M.L., Angelier, J., Lu, C.Y., Chan, Y.C., and Chu, H.T., “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation, Engineering Geology, Vol. 106, pp.1-19, 2009.
102.Tika, T.M., “The effect of rate of shear on the residual strength of soil, PhD thesis, Imperial College of Science and Technology, University of London, 494p, 1989.
103.Tika, T. E., and Hutchinson, J. N., “Ring shear test on soil from the Vaiont landslide slip surface, Geotechnique, Vol. 49, pp.59-74, 1999.
104.Tiwari, B., and Marui, H., “A new method for the correlation of residual shear strength of the soil with mineralogical composition, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, pp.1139-1150, 2005.
105.Trandafir, A., and Sassa, K., “Undrained cyclic shear response evaluation of sand based on undrained monotonic ring shear tests, Soil Dynamics and Earthquake Engineering, Vol. 24, pp.781-787, 2004.
106.Tse, R., and Cruden, D. M., “Estimating joint roughness coefficients, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 16, pp.303-307, 1979.
107.van Alphen, K., and Noothout, P. M., Hekkert, M. P., Turkenburg, W. C., “Evaluating the development of carbon capture and storage technologies in the United States, Renewable and Sustainable Energy Reviews, Vol. 14, pp.971-986, 2010.
108.Vibert, C., Sassa, K., and Fukuoka, H., “Friction characteristics of granular soils subjected to high speed shearing, Proc. the Japan–China Symp. On Landslides and Debris Flows, Vol. 1, pp.295-299, 1989.
109.Wang, G., and Sassa, K., “Post-failure mobility of saturated sands in undrained load-controlled ring shear tests, Canadian Geotechnical Journal, Vol. 39(4), pp.821-837, 2002.
110.Wang, G., and Sassa, K., “Seismic loading impacts on excess pore-water pressure maintain landslide triggered flowslides, Earth Surface Processes and Landforms, Vol. 34, pp.232-241, 2009.
111.Wang, W.N., Chigira, M., and Furuya, T., “Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan, Engineering Geology, Vol. 69, pp.1-13, 2003.
112.Whitman, R.V., and Luscher, U., “Basic experiment into soil structure interaction, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 88(SM6), pp.135-167, 1962.
113.Wu, T.H., Loh, A.K., and Malvern, L.E., “Study of failure envelops of soils, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 89(SM1), pp.145-181, 1963.
114.Xu, S., and de Freitas, M. H., “Shear strength characteristics of rough joints subjected to large displacement, Proceedings of conference on applied rock engineering, London: Institute of Mining and Metallurgy, pp. 269-282, 1988.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top