跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃奎元
研究生(外文):Kuei-YuanHuang
論文名稱:基因遺傳演算法進行覆晶載板接合封裝疲勞壽命之區間最佳化設計
論文名稱(外文):Interval Optimization of Fatigue Life for Flip Chip on Board Package by Genetic Algorithm
指導教授:陳榮盛陳榮盛引用關係
指導教授(外文):Rong-Sheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:覆晶載板接合封裝區間式基因演算法敏感度
外文關鍵詞:Flip Chip on BoardInterval genetic algorithmSensitivity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
覆晶載板接合封裝具有細間距、訊號傳遞快速、散熱性良好等優點,本文針對覆晶載板接合封裝進行研究,希望透過分析能提高封裝之疲勞壽命以確保產品之品質穩定。
本文先使用ANSYS有限元素分析軟體對覆晶載板接合封裝進行分析,模型施加低溫-25°C至高溫125°C的循環負載,其中錫球需考慮其為彈塑性材料,其他材料則視為彈性材料。為了提升模擬效率採用全域/局部方法,並以錫球累積之平均應變能密度,作為評估封裝整體可靠度之指標,然後藉由Syed 提出之疲勞壽命公式,預測覆晶載板接合封裝之疲勞壽命。其次,利用單一因子分析探討各控制因子對平均應變能密度值之影響,並以部分因子設計法篩選顯著之因子效應,再將其設計參數建立迴歸模型,然後引用基因演算法進行最佳化分析。
最後,利用區間式基因演算法,可得知各參數對可靠度指標的敏感度,其順序由大至小分別為底填膠熱膨脹係數、銅柱直徑、電路板厚度、銅柱高度。但實際上還會受到製程規格的限制,因此必須界定成本與技術允許下製程參數的區間範圍,使其區間內各種參數組合所得之反應值皆在允許誤差範圍內,以確保產品的品質穩定。

The Flip Chip on Board is recognized to have the advantages of fine pitch, rapid signal transmission and well heat dissipation. By adopting the Flip Chip on Board, this paper aims to improve the fatigue life of the package and ensure the stability of product quality.
First of all, the ANSYS finite element analysis software is applied. The model of package is given with the thermal cycle of -25°C ~ 125°C, in which the solder ball is considered as elastoplastic while other components are elastic. The global/local method is applied to promote the simulated efficiency. The average strain energy density accumulated in the solder ball is treated as the index for evaluating the reliability of the package. Based on the fatigue life formula proposed by A.Syed, the fatigue life of the Flip Chip on Board is accordingly predicted.
Secondly, in order to analyze the effect of each control factor on the average strain energy density, the one-factor-at-a-time analysis is conducted. Afterwards, the factors with more significant effect are chosen as design parameters by the fractional factorial design method to set up the regression model of response surface. Subsequently, the genetic algorithm combined with the response surface method is applied to obtain the optimal design.
Finally, by the interval genetic algorithm, the sensitivity of each parameter can be tracked out, which are ranked from the largest to the smallest as follows:Coefficient of thermal expansion of underfill, diameter of copper column, thickness of printed circuit board and height of copper column. Thus it is also constrained by the manufacturing standards. Therefore it is urgent to define the range of the parameters under the constraints of cost and technology to ensure the response value of each parameter combination not beyond the allowable error range so that stability of the product quality can be expected.

中文摘要 I
Abstract III
誌謝 IV
目錄 V
表目錄 X
圖目錄 XIII
符號說明 XVIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 2
1-4 研究方法 5
1-5 章節提要 6
第二章 理論基礎 7
2-1 關鍵錫球失效指標 7
2-1-1 錫球破壞模式 7
2-1-2 錫球之塑性增量本構理論 8
2-1-3 在不同溫度下錫球之多線性等向硬化行為 12
2-1-4 錫球之潛變理論 12
2-1-5 疲勞壽命預測 14
2-2 全域/局部模型分析法 16
2-3 實驗設計法 18
2-3-1 單一因子分析 18
2-3-2 部分因子設計 18
2-4 反應曲面法分析 20
2-4-1 實驗配置 20
2-4-2 迴歸模型 21
2-4-3 配適性分析 23
2-4-4 變異分析 24
2-4-5 殘差分析 25
2-5 利用基因遺傳演算法之最佳化分析 26
2-6 區間式遺傳演化之分析 30
第三章 FCOB模型建立與評估 39
3-1 覆晶載板接合封裝介紹 39
3-1-1 覆晶載板接合封裝之製程 39
3-1-2 覆晶載板接合封裝之結構 40
3-2 覆晶載板接合封裝之模擬 41
3-2-1 覆晶載板接合封裝模型之基本假設 41
3-2-2 錫球幾何外型之建立 42
3-2-3 覆晶載板接合封裝模型之建構 42
3-2-4 覆晶載板接合封裝模型之分析型態與邊界條件 43
3-2-5 覆晶載板接合封裝模型之溫度負載 44
3-3 覆晶載板接合封裝模型採用精細網格之探討 44
3-3-1 關鍵錫球評估 44
3-3-2 全域精細模型網格之收斂分析 45
3-3-3 溫度循環負載之收斂分析 45
3-4 覆晶載板接合封裝模型以全域/局部模型之探討 46
3-4-1 全域模型之位移收斂分析 46
3-4-2 局部模型範圍評估 47
3-4-3 局部模型之網格收斂分析 47
3-4-4 局部模型之循環負載收斂分析 48
3-5 精細網格與局部模型結果之比較 48
第四章 FCOB模型區間最佳化設計 70
4-1 單一因子分析 70
4-1-1 因子水準設計 70
4-1-2 實驗結果與探討 71
4-1-3 單一因子分析之結論 74
4-2 部分因子設計 75
4-2-1 實驗配置與結果 75
4-2-2 部分因子設計之變異分析 75
4-2-3 部分因子設計之結論 76
4-3 反應曲面實驗設計分析 76
4-3-1 反應曲面之建立 76
4-3-2 反應曲面之變異分析與殘差分析 78
4-4 區間式最佳化設計 78
4-4-1 基因遺傳演算法求得最佳化參數與反應值 79
4-4-2 區間式基因遺傳演算法求得設計參數區間值 80
4-4-3 區間式設計之討論 81
第五章 結論與未來研究方向 102
5-1 結論 103
5-2 未來研究方向 106
參考文獻 108

[1]Patra, S.K., Lee, Y. C. “Quasi-Static Modeling of the Self-Alignment Mechanism in Flip-Chip Soldering-Part I:Single SolderJoint , Journal of Electronic Packaging, 113, pp. 337-342, 1991
[2]Brakke, K. “ The Surface Evolver , Experimental Mathematics,no. 2,pp. 141-165, 1992
[3]Lau, J.H. “Thermal Fatigue Life Prediction of Flip Chip Solder Joints by Fracture Mechanics Method, Engineering Fracture Mechanics, Vol. 45, No. 5, pp. 643-&, 1993.
[4]Darveaux, R., Banerji, K., Mawer, A. and Dody, G. “ Reliability of Plastic Ball Grid Array Assembly , Ball Grid Array Technology, McGmw-Hill, pp. 379-442, 1995
[5]Lau, J.H. “Flip Chip Techinologies, Mcgraw-Hill,New York,1996
[6]Zheng fang, Qian., Minfu, Lu., Wei Ren. and Sheng, Liu. “Fatigue Life Prediction of Flip-Chip in Terms of Nonlinear Behaviors of solder and Underfill, Electronic Components and Technology conference, San Diego, CA, pp. 141-148, 1999.
[7]Wang, C.H., Holmes, A.S. and Gao, S. “Laser-assisted Bump Transfer for Flip Chip Assembly, Electronic Materials and Packaging, Hong Kong, pp. 86-90, 2000.
[8]Syed, A. “ Accumulated creep strain and energy density basedthermal fatigue life prediction models for SnAgCu solder joints , Proceedings of the 54th Electronic Components and Technolog Conference, Las Vegas, Necada, USA, Vol. 1, pp. 737-746, 2004
[9]Pang J. H. L.and Che F. X. Thermal Fatigue Reliability Analysis for PBGA with Sn-3.8Ag-0.7Cu Solder Joints. In:Proceedings of 6th IEEE Electronics Packaging Technology Conference, pp.787-792,2004
[10]Stoyanov, S., Bailey, C. and Desmulliez, M. “ Optimisation modeling for thermal fatigue reliability of lead-free interconnects in flip-chip packaging , Soldering & Surafce Mount Technology, Vol. 21, No.1, pp. 11-24, 2009
[11]Dongliang Wang, Yuan Yuan, Le Luo, “ Failure Analysis ofSn-3.5Ag Solder Joints for FCOB Using 2-D FEA Model , Shang Hai Institute of Microsystem and Information Technology, Chinese Academy ofSciences, 2010
[12]Yong-Sung Park, Yong-Min Kwon, Jeong-Tak Moon, Young-Woo Lee, Jae-Hong Lee, and Kyung-wook Paik, “Effects of Fine Size Lead-Free Solder Ball on the Interfacial Reactions and Joint eliability , Korea Advanced Institute of Science and Technology (KAIST),2010
[13]Bagley J.D. The Behavior of Adaptive Systems Which Employ Genetic and Correlative Algorithms.
In:PhD thesis, University of Michigan, Ann Arbor, 1967.
[14]Shiau T.N., Kang C.H., Liu D.S. Interval optimization of rotor-bearing systems with dynamic behavior constraints using an interval genetic algorithm.
In:Structural and Multidisciplinary Optimization, Vol.36(6) ,pp 623-631, 2008

[15]羅盛沐「以區間式遺傳演算法進行堆疊晶QFN構裝體疲勞壽命之區間最佳化設計」,國立成功大學工程科學系碩士畢業論文,2009年
[16]潘嘉偉「探討關鍵錫球所累積平均應變能密度之反應曲面於 FCOB覆晶式載板接合封裝體之差異分析」,國立成功大學工程科學系碩士畢業論文,2010年
[17]John H. Lau, C.P. Wong, John L. Prince,Wataru Nakayama, “Electronic Package:Design, Material, Process, and Reliability, The McGraw-Hill Companies, Inc.
[18]Irving H.Shames, Francis A. Cozzarelli, “Elastic and Inelastic Stress Analysis,
[19]李輝煌「田口方法:品質設計的原理與實務」,高立圖書有限公司,2008
[20]葉怡成「實驗計劃法-製程與產品最佳化」,五南圖書有限公司,2001
[21]周鵬程「遺傳演算法原理與應用-活用Matlab」,全華圖書股份有限公司,2007
[22]萬政憲 「在熱循環作用下錫球結構與配置方式對PBGA構裝之可靠度探討」,成功大學工程科學系碩士畢業論文,1999年
[23]劉振中「無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析,成功大學工程科學系碩士畢業論文,2003年
[24]D. C. Montgomery “Design and Analysis of Experiments 6th edition John Wiley & Sons, 2005
[25]Robert Kay, Advanced Microsystems Assembly using Screen Printing Technology, IMAPS-UK MicroTech conference

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊