臺灣博碩士論文加值系統

(3.235.120.150) 您好！臺灣時間：2021/08/06 00:56

:::

詳目顯示

:

• 被引用:1
• 點閱:430
• 評分:
• 下載:55
• 書目收藏:0
 本文主要探討黏著劑對於複合材料樑表面貼附壓電片之動態分析，基於Timoshenko樑理論，不考慮阻尼、溫度效應下，將樑結構分成三個跨距，利用位移場推導出應變與應力的關係和動量，由漢米爾頓定理可得運動方程式，以模態分析法求得整體樑的自然頻率以及其對應的模態形狀函數，其中第一三跨距皆為複合材料結構，第二跨距部分分成有無添加黏著劑(或稱膠黏劑)兩種形式，無添加膠黏劑部分為三層以壓電材料-複合材料-壓電材料所組成的三明治結構，而有添加膠黏劑部分為五層以壓電材料-膠黏劑-複合材料-膠黏劑-壓電材料所組成的三明治結構，將兩種不同形式的樑個別計算，由模態形狀函數的正交性與模態疊加法可求得所有位移函數，使用的運算軟體為Mathematica數學運算軟體，最後再帶入模擬數據，在不同的幾何條件，如第一跨距長度、第二跨距長度、膠黏層厚度、複合材料纖維角度和壓電層厚度下，模擬受一激振外力作用，其添加膠黏劑之效應與整體樑的動態響應，並提出結論與建議。
 The purpose of this thesis is the study of the bonding layer effect on dynamic response of composite beam with surface mounted piezoelectric material, based on the Timoshenko beam theory without considering the damping and temperature effects. The structure is divided into three spans; the use of the displacement field is deduced from the relationship between strain, stress and momentum. The equation of motion by Hamilton’s principle uses the modal analysis to obtain the natural frequency and its corresponding mode shape functions, where the first and third spans are composite structures. The second span section is divided into two forms, with and without a bonding layer; the sandwich structure without a bonding layer is made up of piezoelectric materials and composite materials while the other one is made up of piezoelectric materials, adhesives and composites. Calculations are done in two different forms, the solution of displacement functions of beams using orthogonally modal shape functions and the expansion theorem using the mathematical computing software. Finally, there is the analog data in a variety of geometric conditions, such as the length of the first and second span, the thickness of the bonding layer, the composite fiber angle and the thickness of the piezoelectric layer simulated by a vibrating external force. Analyze the dynamic response of beams with and without bonding layer, and propose the conclusions and suggestions.
 摘要 IAbstract II致謝 III目錄 IV表目錄 VII圖目錄 IX第一章 緒論 11-1前言 11-2研究動機與目的 21-3文獻探討 31-4 本文架構 5第二章 理論架構 62-1簡介 62-2初始設定 72-2-1樑的基本設定 72-2-2無膠黏劑樑之位移場設定 92-2-3有膠黏劑樑之位移場設定 102-3應力應變分析 132-3-1複合材料層應力應變分析 132-3-2 壓電片應力應變分析 152-3-3 膠黏劑應力應變分析 172-3-4應變能與動能 202-4動態分析 222-4-1運動方程式 222-4-2各跨距之運動方程式 252-4-3各跨距之邊界條件 27第三章 研究方法及內容 293-1自由振動 293-1-1求解一三跨距運動方程式 293-1-2求解無膠黏層樑第二跨距運動方程式 313-1-3求解有膠黏層樑第二跨距聯立微分方程式 363-1-4求解自然頻率 433-2強迫振動 463-2-1外力形式 463-2-2求解無膠黏層樑位移函數 463-2-3求解有膠黏層樑位移函數 48第四章 案例探討與模擬數據分析 514-1案例探討自由振動 514-1-1 材料基本參數 514-1-2整體懸臂樑自然頻率與模態圖 534-2案例探討強迫振動 564-2-1改變複合材料疊層角度變化影響 564-2-2改變壓電層厚度變化影響 594-2-3添加膠黏劑變化影響 624-2-4改變第一跨距長度變化影響 644-2-5改變第二跨距長度變化影響 67第五章 結論與建議 705-1結論 705-2未來研究方向與建議 71參考文獻 72附錄A 76附錄B 79附錄C 83附錄D 90
 [1]Teh K. K. and Huang C. C. (1979), “The vibrations of generally orthotropic beams, a finite element approach, Journal of Sound and Vibration, vol. 62, pp. 195–206.[2]Chen A. T. and Yang T. Y. (1985), “Static and dynamic formulation of symmetrically laminated beam finite element for microcomputer, Journal of Computers and Structures, vol. 19, pp. 459–75.[3]Chandrashekhara K., Krishnamurthy K. and Roy S. (1990), “Free vibration of composite beams including rotary inertia and shear deformation, Journal of Computers and Structures, vol. 14, pp. 269–79.[4]Krishnaswamy S., Chandrashekhara K. and Wu W. Z. B. (1992), “Analytical solutions to vibration of generally layered composite beams, Journal of Sound and Vibration, vol. 159, pp. 85–99.[5]Teboub Y. and Hajela P. (1995), “Free vibration of generally layered composite beams using symbolic computations, Journal of Computers and Structures, vol.33, pp. 123–34.[6]Banerjee J. R. and Williams F.W. (1996), “Exact dynamic stiffness matrix for composite Timoshenko beams with applications, Journal of Sound and Vibration, vol. 194, pp. 573–85.[7]Krishna Murty A.V. (1985), “On the shear deformation theory for dynamic analysis of beams, Journal of Sound and Vibration, vol. 101, pp. 1–12.[8]Ritchie I. G., Rosinger H. E., Shillinglaw A. J. and Fleury W. H. (1975), “The dynamic elastic behaviour of a fiber reinforced composite sheet: Part I. The precise experimental determination of the principal elastic moduli, Journal of Physics D: Applied Physics, vol. 8, pp. 1733–49.[9]Mace B.R. (1987), “Active control of flexural vibrations, Journal of Sound and Vibration, vol. 114(2), pp. 253-270[10]Robbins D. H. and Reddy J. N. (1991), Analysis of piezoelectrically actuated beams using a layer-wise displacement theory, Journal of Computers and Structures, vol. 41(2), pp. 265-279.[11]Lee C. K. (1992), Piezoelectric laminates: theory and experiments for distributed sensors and actuators, Intelligent Structural Systems, pp. 77-167.[12]Dosch J. J., Inman D. J. and Garcis E. (1992), “Self-sensing piezoelectric actuator for collocated control, Journal of Intelligent Material System and Structures, vol. 3(1), pp. 166-185.[13]Sciuva M. D. and Icardi U. (1995), Large deflection of adaptive multilayered Timoshenko beams, Journal of Composite Structures, vol. 31(1), pp. 49-60.[14]Zhang X. D. and Sun C. T. (1996), Formulation of an adaptive sandwich beam, Smart Materials and Structures, vol. 5(6), pp. 814-823.[15]Wang Jialai and Zhang Chao (2009), Energy release rate and phase angle of delamination in sandwich beams and symmetric adhesively bonded joints, International Journal of Solids and Structures, vol. 46, pp. 4409-4418.[16]Ryu D. H. and Wang K. W. (2004), Analysis of interfacial stresses and actuation authorities induced by surface-bonded piezoelectric actuators on curved flexible beams, Smart Materials And Structures, vol. 13, pp. 753-761.[17]Zhang S. and Hsia K. J. (2001), Modeling the fracture of a sandwich structure due to cavitation in a ductile adhesive layer, Journal of Applied Mechanics, Vol. 68, pp. 93-100.[18]Baz A. (1997), “Dynamic Boundary control of beams using active constrained layer damping. Transaction of the ASME, Journal of Vibration and Acoustics, Vol. 119, pp. 166-172.[19]Baillargeon B. P. and Vel S. S. (2005), Active vibration suppression of sandwich beams using piezoelectric shear actuators: experiments and numerical simulations, Journal of Intelligent Material Systems and Structures,vol.16(6), pp. 517-530.[20]Raja S., Sreedeep R. and Prathap G. (2004), Bending behavior of hybrid-actuated piezoelectric sandwich beams, Journal of Intelligent Material Systems and Structures, vol. 15(8), pp. 611-619.[21]Li J. and Hua H. (2009), Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory, Journal of Composite Structures, Vol. 89, pp. 433-442.[22]Lee S., Byun J. and Hong S. (2003), Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites, Materials Science and Engineering, vol. 347,pp. 346-358.[23]Lawcock G., Ye L., Mai Y. and Sun C. (1997), The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates, Journal of Composites Science and Technology, vol. 57, pp. 35-45.[24]Huang S. (2003), An analytical method for calculating the stress and strain in adhesive layers in sandwich beams, Journal of Composite Structures, vol. 60, pp. 105-114.[25]Khalili S. M. R., Nemati N., Malekzadeh K. and Damanpack A.R. (2010), “Free vibration analysis of sandwich beams using improved dynamic stiffness method, Journal of Composite Structures, Vol. 92, pp. 387-394.[26]Banerjee J. R., Cheung C. W., Morishima R., Perera M. and Njuguna J. (2007), “Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment, International Journal of Solids and Structures, vol. 44, pp. 7543–7563.[27]Kessler S. S., S. Spearing M. and Soutis C. (2002), “Optimization of lamb wave methods for damage detection in composite materials, Journal of Smart Materials and Structures, vol. 11, pp.269–278.[28]Photiou N. K. (2005), Rehabilitation of steel members utilizing hybrid FRP composite material systems, University of surrey, Guildford,United Kingdom.[29]S.Graham Kelly(2012), Mechanical vibrations theory and applications, USA Stamford.[30]R.-T.Wang(2010),“Structural responses of surface-mounted piezoelectric beams, Journal of Mechanics, Vol. 26,pp. 49-59.[31]王信翔(2006)，「複材樑之振動控制」，國立成功大學航空太空工程學系碩士論文。[32]李維平(2006)，「碳纖維/環氧樹脂積層板力學性質之電腦輔助分析」，逢甲大學紡織工程研究所碩士論文。[33]曾昶霖(2009)，「具有貼附式壓電材料的複合樑受熱-負載-電壓作用之結構分析」，國立成功大學工程科學系碩士論文。[34]邱育哲(2011)，「部分貼附式壓電材料添加膠黏劑之複合材料樑結構分析」，國立成功大學工程科學系碩士論文。[35]陳俊德(2000)，「離層對連續樑自由振動之影響」，國立成功大學航空太空工程學系碩士論文。[36]王文毅（2002），「複合三明治結構膠黏層的黏彈性質分析」，國立中正大學機械系碩士論文。
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 複合三明治結構膠黏層的黏彈性質分析 2 複材樑之振動控制 3 離層對連續樑自由振動之影響 4 部分貼附式壓電材料添加膠黏劑之複合材料樑結構分析 5 具有貼附式壓電材料的複合樑受熱-負載-電壓作用之結構分析 6 應用光纖光柵感測器量測結構應變、溫度及振動 7 光纖感測器對懸臂樑結構之振動量測研究 8 含壓電片複合材料旋轉樑動態特性之探討 9 含壓電感測器與制動器之複合材料樑之振動控制 10 材料非等向性對結構破壞行為的影響 11 複材夾心板之自由振動分析 12 新型高分子複合壓電薄膜之應力與應變分析 13 貼附式壓電材料的複合曲樑之應力分析 14 有限元素法應用於含壓電致動器與感應器貼片智能梁動力分析與控制模擬 15 新型高分子複合材料壓電薄膜之製備與量測

 無相關期刊

 1 複合式壓電片裝置之致動與感測機電行為研究 2 含壓電材料楔形結構以及含電極壓電片之奇異電彈場分析 3 探討不同黏著劑應用在鋰電池矽基陽極之比較 4 具有壓電材料懸臂樑負載-電壓耦合效應之動態分析 5 便利貼黏著劑之分析 ─老化性質及對紙質類藏品之影響 6 嵌入式機器人搭乘電梯之研發與實作 7 SiO2奈米微粒對壓克力感壓性黏著劑性能之影響 8 部份嵌入壓電材料懸臂樑之動態響應分析 9 壓電片性能研究之應用 10 曲梁之電壓與運動耦合關係 11 台灣職業棒球投手直球、滑球和曲球的生物力學分析 12 加速規定位系統研製 13 錐形介電彈性體組於鞋底發電裝置的應用 14 應用基於解析嘗試函數Timoshenko梁元素含壓電貼片智能梁之最佳振動控制模擬 15 定速行駛車輛負載對樑結構之動態反應

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室