跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙晨喬
研究生(外文):Chen-ChiaoChao
論文名稱:稀薄濃度的生化樣品預濃縮之研究
論文名稱(外文):The Study of the Preconcentration for Diluted Biochemical Samples
指導教授:楊瑞珍楊瑞珍引用關係
指導教授(外文):Ruey-Jen Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:62
中文關鍵詞:電動學微流體晶片電雙層重疊電滲流濃度極化樣品預集中
外文關鍵詞:Electrokineticsmicrofluidic chipOverlapped Double LayersElectroosmosisConcentration PolarizationPreconcentration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微機電技術,並且利用陽離子選擇性膜替代奈米管道製作出可應用於樣品預濃縮的微流體晶片。經由施加電場於微流體晶片,由於陽離子水凝膠內孔徑的電雙層重疊現象,使得陽離子選擇性膜內部產生離子選擇之特性。更具體地說,由於納米通道內存在正離子和負離子的通量差,導致在微、奈米管道界面產生濃度極化效應,因而造成離子交換膜附近濃度梯度的發生。
本研究採用陽離子選擇性膜,其陽離子通量大於陰離子通量。當我們施加一個電場,由於濃度極化效應,在陽極側會發生離子消散,而在陰極側則會發生離子富集。在離子消散區與電滲流流場邊界交接處有一電場降幅區,使得離子在此累積。因此在管道中形成一個高濃度的界面,可應用於樣品預濃縮。
在本研究中,在管道方面,我們將討論幾何因素對樣品預濃縮的影響,透過直通管道和漸縮管道進行樣品聚集。漸縮管道是在通道的中間,並縮小了寬度,利用不同流速的影響,使樣品可以集中在較小的區域。因此,在這縮小的單位面積裡熒光濃度會增加。在樣品方面,首先我們利用熒光黃,來確認此樣品預濃縮的機制。另外,為了探索此元件在生物醫學檢測中的應用,我們利用熒光標記的牛血清白蛋白為樣品,觀察在同一元件中的樣品累積效應。
首先,我們推測在更高的電壓會相對更快、更有效的濃縮效果,因而利用的不同的電壓差,研究探討如何加強在此元件富集效果的可行性,進而使此元件達到最佳化。基於實驗結果,因此我們利用50V電壓差為本實驗的基礎。在直通管道實驗中,熒光標記的牛血清白蛋白的聚集在360秒裡可達100倍。而在中間寬50微米的漸縮管道,其聚集程度可達200倍。在中間寬25微米的漸縮管道,結果表明,在240秒內聚集程度約至少可達400倍。


In this experiment, we demonstrate production of a microfluidic chip through a micro-electromechanical technique and, by use of Nafion instead of a nanochannel, we produce integrated micro-nano chips for use in sample preconcentration. By applying an electric field to the chips, the Nafion becomes ion selective as a result of inner electric double layer overlapping. More specifically, when a difference in flux exists between positive and negative ions in the nanochannels, it results in a concentration polarization phenomenon at the micro and nano interface. Concentration polarization phenomena cause a concentration gradient to occur near the membrane.
This study used an ion-selective membrane in which the flux of the cation is larger than the flux of the anion. When we applied an electric field, the effect caused a partial depletion at the anodic side and ion enrichment at the cathodic side. The ion accumulation is induced by the difference in electromigration at the border between the depletion zone and electroosmosis flow. In the end, it creates a high concentration interface in the channel.
In this experiment, we will discuss how geometric factors influence preconcentration through a straight microchannel and a convergent microchannel. A convergent channel is in the middle of a channel and narrows the width, so that the sample can be concentrated in smaller areas by the impact of different flow rates. As a result, the fluorescence concentration increases in this reduced unit area.
We hypothesized relatively faster and more efficient concentration at higher voltages, and thus used the potential difference to study ways to enhance the feasibility of the preconcentration effect in this device, thereby optimizing the device. Based on the experimental result, we took the applied voltage of 50 V in this experiment. To confirm how it works in the preconcentration process, a fluorescein dye was used. To explore its applications in biomedical detection, we used FITC-labeled bovine serum albumin samples to observe the cumulative effect in the same device. In the experiment using a straight microchannel, FITC-labeled bovine serum albumin accumulated up to 100-fold in 360 s. With a convergent microchannel whose middle was 50 μm wide, the result showed that one can achieve a 200-fold increase in preconcentration factor within 840 s. With a convergent microchannel whose middle was 25 μm wide, the result showed that a preconcentration factor of at least a 400 had been achieved within 240 s.

中文摘要 I
Abstract II
誌 謝 IV
Contents V
List of Figures VII
Abbreviation XI
Nomenclature XII
Greeks XIII
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Micro-Electro Mechanical System (MEMS) 1
1.3 Microfluidic Biochips 2
1.4 Literature Survey 4
1.5 Motivation 11
1.6 Thesis organization 12
Chapter 2 Electrokinetic Effect 13
2.1 Foreword 13
2.2 Electrical Double Layer, EDL 13
2.2.1 Overlapped Double Layers 15
2.3 Electroosmosis 16
2.4 Electrophoresis 17
2.5 Concentration Polarization Phenomena 17
Chapter 3 Material and Methods 22
3.1 Material and Reagents 22
3.2 Mask 22
3.3 Fabrication of Microchip 23
3.3.1 Substrate Pretreatment 24
3.3.2 Photoresist Coating 24
3.3.3 Exposure 25
3.3.4 Development 25
3.3.5 PDMS Casting 26
3.3.6 Oxygen Plasma Bonding 27
3.3.7 Nafion Patterned Process 28
3.4 Instrument 29
3.4.1 Microscope 30
3.4.2 Image Capture Unit (CCD) 30
3.4.3 DC Measurements 31
3.5 Microchip Design 32
3.6 Experimental Setup 35
Chapter 4 Result and Discussion 37
4.1 Sample Preconcentration Process 37
4.2 Ion Depletion 38
4.3 Effect of Potential Voltage on Preconcentration 39
4.4 Effect of Microchannel Geometry on Preconcentration 43
4.4.1 Preconcentration with Fluorescein 44
4.4.2 Preconcentration with FITC-Labeled Bovine Serum Albumin 47
Chapter 5 Conclusion 52
References 54
Appendix 61
References
1. Anderson NL, The Human Plasma Proteome: History, Character, and Diagnostic Prospects. Molecular & Cellular Proteomics 1: 845-867, 2002.
2. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, et al., Planar chips technology for iniaturization and integration of separation techniques into monitoring systems - capillary electrophoresis on a chip. Journal of Chromatography A 593: 253-258, 1992.
3. Bao MH, Wang WY, Future of microelectromechanical systems (MEMS). Sensors and Actuators A-Physical 56: 135-141, 1996.
4. Mala GM, Li DQ, Werner C, JacObasch HJ, Ning YB, Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. International Journal of Heat and Fluid Flow 18: 489-496, 1997.
5. Chang CC, Yang RJ, A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3D microchannels with patterned charged surfaces. Journal of Micromechanics and Microengineering 16: 1453-1462, 2006.
6. Xia HM, Wan SYM, Shu C, Chew YT, Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab on a Chip 5: 748-755, 2005.
7. Xia HM, Shu C, Wan SYM, Chew YT, Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques. Journal of Micromechanics and Microengineering 16: 53-61, 2006.
8. Shoji S, Microfabrication technologies and micro flow devices for chemical and bio-chemical micro flow systems. Microprocesses and Nanotechnology 7B-4-2: 72-73, 1999.
9. Gravesen P, Branebjerg J, Jensen OS, Microfluidics-a review. Journal of Micromechanics and Microengineering 3: 168-182, 1993.
10. Van Hal NLW, Vorst O, Van Houwelingen A, Kok EJ, Peijnenburg A, et al., The application of DNA microarrays in gene expression analysis. Journal of Biotechnology 78: 271-280, 2000.
11. Erill I, Villa R, Goudignon P, Fonseca L, Plaza JA, Silicon microsystem passivation for high-voltage applications in DNA chips. Microelectronics Reliability 40: 787-789, 2000.
12. Richter T, Shultz-Lockyear LL, Oleschuk RD, Bilitewski U, Harrison DJ, Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices - Determination of xanthine. Sensors and Actuators B-Chemical 81: 369-376, 2002.
13. Vinet F, Chaton P, Fouillet Y, Microarrays and microfluidic devices: miniaturized systems for biological analysis. Microelectronic Engineering 61-2: 41-47, 2002.
14. Beebe D, Wheeler M, Zeringue H, Walters E, Raty S, Microfluidic technology for assisted reproduction. Theriogenology 57: 125-135, 2002.
15. Reyes DR, Iossifidis D, Auroux PA, Manz A, Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry 74: 2623-2636, 2002.
16. Manz A, Graber N, Widmer HM, Miniaturized Total Chemical-Analysis Systems - A Novel Concept For Chemical Sensing. Sensors and Actuators B-Chemical 1: 244-248, 1990.
17. Kim SJ, Song YA, Han J, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chemical Society Reviews 39: 912-922, 2010.
18. Burgi DS, Chien RL, Optimization in Sample Stacking for High-Performance Capillary Electrophoresis. Analytical Chemistry 63: 2042-2047, 1991.
19. Gebauer P, Bocek P, Recent progress in capillary isotachophoresis. Electrophoresis 23: 3858–3864, 2002.
20. Swerdlow JA-WH, Fluidic Preconcentrator Device for Capillary Electrophoresis of Proteins. Analytical Chemistry 75: 5207-5212, 2003.
21. Quirino JP, Terabe S, Exceeding 5000-Fold Concentration of Dilute Analytes in Micellar Electrokinetic Chromatography. Science 282: 465-468, 1998.
22. Yu C, Davey MH, Svec F, Frechet JMJ, Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Analytical Chemistry 73: 5088-5096, 2001.
23. Oleschuk RD, Shultz-Lockyear LL, Ning YB, Harrison DJ, Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Analytical Chemistry 72: 585-590, 2000.
24. Song S, Singh AK, Kirby BJ, Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Analytical Chemistry 76: 4589-4592, 2004.
25. Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM, Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Analytical Chemistry 71: 1815-1819, 1999.
26. Wang Y-C, Stevens AL, Han J, Million-fold Preconcentration of Proteins and Peptides by Nanofluidic Filter. Analytical Chemistry 77: 4293-4299, 2005.
27. Foote RS, Khandurina J, Jacobson SC, Ramsey JM, Preconcentration of proteins on microfluidic devices using porous silica membranes. Analytical Chemistry 77: 57-63, 2005.
28. Cui HC, Horiuchi K, Dutta P, Ivory CF, Multistage isoelectric focusing in a polymeric microfluidic chip. Analytical Chemistry 77: 7878-7886, 2005.
29. Jung B, Bharadwaj R, Santiago JG, On-chip millionfold sample stacking using transient isotachophoresis. Analytical Chemistry 78: 2319-2327, 2006.
30. Hoeman KW, Lange JJ, Roman GT, Higgins DA, Culbertson CT, Electrokinetic trapping using titania nanoporous membranes fabricated using sol-gel chemistry on microfluidic devices. Electrophoresis 30: 3160-3167, 2009.
31. Hlushkou D, Dhopeshwarkar R, Crooks RM, Tallarek U, The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units. Lab on a Chip 8: 1153-1162, 2008.
32. Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK, Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Analytical Chemistry 78: 4976-4984, 2006.
33. Kim SJ, Li LD, Han J, Multiplexed Proteomic Sample Preconcentration Device Using Surface-Patterned Ion-Selective Membrane. Lab on a Chip 8: 596-601, 2008.
34. Yu H, Lu Y, Zhou YG, Wang FB, He FY, et al., A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab on a Chip 8: 1496-1501, 2008.
35. Kim P, Kim SJ, Han J, Suh KY, Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Letters 10: 16-23, 2010.
36. Dhopeshwarkar R, Crooks RM, Hlushkou D, Tallarek U, Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Analytical Chemistry 80: 1039-1048, 2008.
37. Schoch R, Han J, Renaud P, Transport phenomena in nanofluidics. Reviews of Modern Physics 80: 839-883, 2008.
38. Kim SJ, Li LD, Han J, Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir 25: 7759-7765, 2009.
39. Kim SJ, Wang Y-C, Lee J, Jang H, Han J, Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Physical review letters 99: 044501, 2007.
40. Wang Y, Pant K, Chen Z, Wang G, Diffey WF, et al., Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow. Microfluidics and Nanofluidics 7: 683-696, 2009.
41. Wang YC, Han J, Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab on a Chip 8: 392-394, 2008.
42. Rubinstein I, Shtilman L, Voltage against current curves of cation exchange membranes. Journal of the Chemical Soceity-Faraday Transactions II 75: 231-246 1979.
43. Dukhin SS, Mishchuk NA, Intensification of electrodialysis based on electroosmosis of the second kind. Journal of Membrane Science 79: 199-210, 1993.
44. Barraga´n VM, Ruı´z-Bauza´ C, Current Voltage Curves for Ion-Exchange Membranes A Method for Determining the Limiting Current Density. Journal of Colloid and Interface Science 205: 365–373, 1998.
45. Zaltzman IRB, Electro-osmotically induced convection at a permselective membrane. Physical Review E 62: 2238-2251, 2000.
46. Yossifon G, Mushenheim P, Chang Y-C, Chang H-C, Nonlinear current-voltage characteristics of nanochannels. Physical Review E 79: 046305 2009.
47. Pu QS, Yun JS, Temkin H, Liu SR, Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Letters 4: 1099-1103, 2004.
48. Chun H, Chung TD, Ramsey JM, High Yield Sample Preconcentration Using a Highly Ion-Conductive Charge-Selective Polymer. Analytical Chemistry 82: 6287-6292, 2010.
49. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, et al., Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Analytical Chemistry 72: 2995-3000, 2000.
50. Kim SJ, Han J, Self-Sealed Vertical Polymeric Nanoporous-Junctions for High-Throughput Nanofluidic Applications. Analytical Chemistry 80: 3507-3511, 2008.
51. Liu V, Song YA, Han J, Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip. Lab on a Chip 10: 1485-1490, 2010.
52. Huang KD, Yang RJ, A nanochannel-based concentrator utilizing the concentration polarization effect. Electrophoresis 29: 4862-4870, 2008.
53. Mao P, Han J, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab on a Chip 5: 837-844, 2005.
54. Mao P, Han J, Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab on a Chip 9: 586-591, 2009.
55. Huang KD, Yang RJ, Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluidics and Nanofluidics 5: 631-638, 2008.
56. Mishchuk NA, The role of water dissociation in concentration polarisation of disperse particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects 159: 467-475, 1999.
57. Russel WB, Saville DA, Schowalter WR, Colloid Science: Principles and Applied Mathematics. Cambridge University Press, 1989.
58. Hunter RJ, Zeta Potential in Colloid Science: Principles and Applications. Academic Press, New York 8: 386, 1981.
59. Probstein RF, Physicochemical hydrodynamics: an introduction. John Wiley and Sons, New York, 1994.
60. Yang C, Li DQ, Masliyah JH, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. International Journal of Heat and Mass Transfer 41: 4229-4249, 1998.
61. Lyklema J, Electrokinetics after Smoluchowski. Colloids and Surfaces a-Physicochemical and Engineering Aspects 222: 5-14, 2003.
62. Yang RJ, Fu LM, Hwang CC, Electroosmotic entry flow in a microchannel. Journal of Colloid and Interface Science 244: 173-179, 2001.
63. Patankar NA, Hu HH, Numerical simulation of electroosmotic flow. Analytical Chemistry 70: 1870-1881, 1998.
64. Kim SJ, Ko SH, Kang KH, Han J, Direct seawater desalination by ion concentration polarization. Nature Nanotechnology 5: 297-301, 2010.
65. Schoch RB, Han J, Renaud P, Transport phenomena in nanofluidics. Reviews of Modern Physics 80: 839-883, 2008.
66. Strathmann H, Ion-Exchange Membrane Separation Processes. Elsevier, 2004.
67. Ng JMK, Gitlin I, Stroock AD, Whitesides GM, Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23: 3461-3473, 2002.
68. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, et al., Fabrication of Microfluidic Systems in Poly(dimethylsiloxane). Electrophoresis 21: 27-40, 2000.
69. McDonald JC, Whitesides GM, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research 35: 491-499, 2002.
70. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S, Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems 14: 590-597, 2005.
71. Kim SJ, Song Y-A, Han J, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chemical Society Reviews 39: 912-922, 2010.
72. Kim SM, Burns MA, Hasselbrink EF, Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Analytical Chemistry 78: 4779-4785, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊