跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李弘彰
研究生(外文):Hung-ChangLi
論文名稱:利用蜜蜂最佳化演算法於Facebook建立動態試題系統
論文名稱(外文):A Dynamic Question Generation System on Facebook Using Artificial Bee Colony Algorithm
指導教授:黃悅民黃悅民引用關係
指導教授(外文):Yue-Ming Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:65
中文關鍵詞:社群網路服務數位學習電腦輔助適性化測驗蜜蜂演算法
外文關鍵詞:Social Networking ServiceE-LearningComputerized Adaptive TestArtificial Bee Colony Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:2
臉書目前是世界上最流行的社群服務之一,並已廣泛應用於數位學習的領域中。在數位學習的環境裡,需要一個良好且有效率的方式來判別學習者的能力以及學習之後的成效。本研究提出了一套動態試題庫系統。這套系統會根據使用者的個人檔案與按「讚」的資訊以及在本系統參加數位學習課程的內容來收集使用者的相關學習經驗與專業能力和興趣資料。而且,系統會利用電腦輔助適性化測驗與蜜蜂演算法有效地尋找最佳的試題。為了評估此系統的適用性,實驗設計比較本動態試題系統與傳統出題系統,使用學習態度、系統滿意度與科技接受模式發展的問卷來調查使用者接受DQGS的意願。由實驗結果得知,系統設計的特色結合臉書對於學習者使用DQGS的意願有正面的影響。
Facebook is currently one of the world's most popular social networking services, and has been widely used in the field of e-learning. In an e-learning environment, learners need a good and efficient way to assess their abilities and learning effectiveness. In this study, a Dynamic Question Generation System was proposed. Based on the theory of Computerized Adaptive Test, the proposed system used the artificial bee colony algorithm to find the suitable questions for each learner according to the learner's profile, and Facebook articles reading experience, professional ability, interest, and the attending e-learning records on the system. In order to evaluate the proposed system, the experiment used two question generation methods that were the dynamic question generation system and the traditional question generation system to explore the learner’s intention to use the proposed system by a questionnaire. The questionnaire consists of three main subjects: learning attitude, system satisfaction, and the technology acceptance model. The results show that the willingness of learner to use the DQGS has a positive impact on the integration of the system characteristics and Facebook.
摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of Table vii
List of Figure vii
Chapter 1 Introduction 1
1.1 Research Background and Motivation 3
1.2 Research Purpose 4
1.3 Research Method 5
1.4 Research Procedures 6
1.5 Thesis Structure 8
Chapter 2 Related Literatures 9
2.1 Social Network Service 9
2.1.1 Introduction of Social Network Service 9
2.1.2 Facebook 13
2.2 Computerized Adaptive Test 15
2.3 Technology Acceptance Model 16
2.4 Artificial Bee Colony Algorithm 20
2.4.1 Swarm Intelligence Technology 20
2.4.2 Artificial Bee Colony Optimization 22
2.5 Formative Assessment 26
Chapter 3 System Implementation 27
3.1 Dynamic Question Generation Scheme 27
3.2 System Architecture 31
3.3 System Demonstration 34
Chapter 4 Experiment Design 41
4.1 Participants 41
4.2 Experimental procedure 41
4.3 Measurement tools 43
4.4 Data collection 44
Chapter 5 Experimental Result and Discussion 46
5.1 Experimental Result 46
5.2 Learning Attitude 48
5.3 System Satisfaction 50
5.4 Technology Acceptance Model 52
5.5 Discussion 56
Chapter 6 Conclusion 58
References 60
Appendix A. The Questionnaire 65
Ajzen, I. & Fishbein, M. (1980). Understanding attitudes and predicting social behavior (1st ed.). Englewood Cliffs, NJ: Prentice-Hall.
Bagozzi, R. P.; Warshaw, P. R. (1992), Development and test of a theory of technological learning and usage. Human Relations 45(7): 660–686
Beni, G. & Wang, J. (1989). Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy.
Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4), 353–373.
Bonabeau, E., & Theraulaz, G. (2000). Swarm smarts (behavior of social insects as model for complex systems). Scientific American, 282(3), 72–79.
Bosch, T. E. (2009). Using online social networking for teaching and learning: Facebook use at the University of Cape Town. Communication, 35(2), 185–200.
Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210–230.
Carlson, N. (2010). At Last – The Full Story Of How Facebook Was Founded. Business Insider.
Charman, D. & Elmes, A. (1998). A computer-based formative assessment strategy for a basic statistics module in geography. Journal of Geography in Higher Education, 22, 381-385.
Chang, C. H. (2012). A Learning Companion Recommendation System for Facebook Using an Artificial Bee Colony Algorithm. Thesis.
Cheng, S. C., Lin, Y. T., & Huang, Y. M. (2009). Dynamic question generation system for web-based testing using particle swarm optimization, Expert Systems with Applications, 36(1), 616–624.
Cheung, C. M. K., Chiu, P. Y., & Lee, M. K. O. (2011). Online social networks: why do students use Facebook? Computers in Human Behavior, 27(4), 1337–1343.
Cheung, C. M. K., & Lee, M. K. O. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24–30.
Chen, H. C., Hsu, C. C., Huang, K. K., & Huang, Y. M., (2012), An individual video learning material recommendation system on MySpace applying an artificial bee colony algorithm, Advanced Science Letters, 9, 585–590.
Crooks, T. (2001), The Validity of Formative Assessments. British Educational Research Association Annual Conference, 13-15.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Ph.D. dissertation, MIT Sloan School of management, Cambridge, MA.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.
Davis, F. D. , Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical model. Management Science, 35(8), 982-1003.
Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4), 28–39.
Eldon, E. (2008). 2008 Growth Puts Facebook In Better Position to Make Money. VentureBeat (San Francisco). Retrieved December 19, 2008.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
Grosseck, G., Bran, R. & Tiru, L., (2011). Dear teacher, what should I write on my wall? A case study on academic uses of Facebook, Procedia - Social and Behavioral Sciences, 15, 1425-1430.
Guzman, E. & Conejo, R. (2005). Self-assessment in a feasible, adaptive web-based testing system. IEEE Transactions on Education, 48(4), 688–695.
Hew, K. F. (2011). Students' and teachers' use of Facebook. Computers in Human Behavior, 27(2), 662–676.
Huang, T. C., Huang, Y. M., & Yu, F. Y. (2011). Cooperative weblog learning in higher education: Its facilitating effects on social interaction, time lag, and cognitive load. Educational Technology & Society, 14(1), 95–106.
Huang, Y. M., & Liu, C. H. (2009). Applying adaptive swarm intelligence technology with structuration in web-based collaborative learning. Computers & Education, 52(4), 789–799.
Huang, Y. M., & Wu, T. T. (2011). A systematic approach for learner group composition utilizing u-learning portfolio. Educational Technology & Society, 14(3), 102–117.
Huang, Y. M., Chiu, P. S., Liu, T. C., & Chen, T. S. (2011). The design and implementation of a meaningful learning-based evaluation method for ubiquitous learning. Computers & Education, 57(4), 2291–2302.
Huang, Y. M., Huang, T. C., & Hsieh M. Y. (2008). Using annotation services in a ubiquitous Jigsaw cooperative learning environment. Educational Technology & Society, 11(2), 3–15.
Huang, Y. M., Huang, Y. M., Huang, S. H., & Lin, Y. T. (2012). A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use. Computers & Education, 58(1), 273–282.
Huang, Y. M., Kuo, Y. H., Lin, Y. T., & Cheng, S. C. (2008). Toward interactive mobile synchronous learning environment with context-awareness service. Computers & Education, 51(3), 1205–1226.
Huang, Y. M., Lin, Y. T., & Cheng, S. C. (2009). An adaptive testing system for supporting versatile educational assessment. Computers & Education, 52(1), 53–67.
Huang, Y. M., Lin, Y. T., & Cheng, S. C. (2010). Effectiveness of a Mobile Plant Learning System in a science curriculum in Taiwanese elementary education. Computers & Education, 54(1), 47–58.
Huhta, A. (2010), Diagnostic and Formative Assessment. The Handbook of Educational Linguistics, 469–482.
Hsu, C. C., Chen, H. C., Huang, K. H., Huang, K. K, & Huang, Y. M., (2012), The development of an adaptive group composition system on Facebook for collaborative learning using an artificial bee colony algorithm, Applied Mathematics & Information Sciences, 6(3S), 943S–951S.
Hsu, C. C., Chen, H. C., Huang, K. K., & Huang, Y. M., A personalized auxiliary material recommendation system based on learning style on Facebook applying an artificial bee colony algorithm, Computers and Mathematics with Applications, (in press).
Johnson, D. W. & Johnson, R. T. (1999). Learning together and alone: Cooperative, competitive, and individualistic learning (5th ed.). Boston: Allyn and Bacon.
Jones, M. G., Farquhar, J. D., & Surry, D. W. (1995). Using metacognitive theories to design user interfaces for computer-based learning. Educational Technology, 35(4), 12–22.
Kabilan, M. K., Ahmad, N., & Abidin, M. J. Z. (2010). Facebook: An online environment for learning of English in institutions of higher education? The Internet and Higher Education, 13(4), 179–187
Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06, Erciyes Univ. Press, Erciyes.
Karaboga, D., Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214, 108-132.
Karaboga, N. (2009). A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute, 346(4), 328-348.
Lilley, M., Barker, T., & Britton, C. (2004). The development and evaluation of a software prototype for computer-adaptive testing. Computers & Education, 43(1-2), 109–123.
Lin, Y. T., Huang, Y. M., & Cheng, S. C. (2010). An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Computers & Education, 55(4), 1483–1493.
Lin, Y. C., Lin, Y. T., & Huang, Y. M. (2011). Development of a diagnostic system using a testing-based approach for strengthening student prior knowledge. Computers & Education, 57(2), 1557–1570.
Liu, I. F., Chen, M. C., Sun, Y. S., Wible, D., & Kuo, C. H. (2010). Extending the TAM model to explore the factors that affect Intention to Use an Online Learning Community. Computers & Education, 54(2), 600–610.
Mason, R. (2006). Learning technologies for adult continuing education. Studies in Continuing Education, 28(2), 121-133.
Matney, M., & Borland, K. (2009). Facebook, blogs, tweets: how staff and units can use social networking to enhance student learning, Presentation at the annual meeting of the National Association for Student Personnel Administrators, Seattle, WA.
Mazman, S. G., & Usluel, Y. K. (2010). Modeling educational usage of Facebook. Computers & Education, 55(2), 444–453.
Pham, D. T., Castellani, M., & Fahmy, A. A. (2008). Learning the inverse kinematics of a robot manipulator using the Bees Algorithm. Paper presented at the Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference.
Rau, P. L. P., Gao, Q., & Ding, Y. (2008). Relationship between the level of intimacy and lurking in online social network services. Computers in Human Behavior, 24(6), 2757–2770.
Roblyer, M. D., McDaniel, M., Webb, M., Herman, J., & Witty, J. V. (2010). A comparison of college faculty and student uses and perceptions of social networking sites. The Internet and Higher Education. 13(3), 134–140.
Semet, Y., Lutton, E., & Collet, P. (2003). Ant colony optimization for E-learning: Observing the emergence of pedagogic suggestions. In IEEE SIS’03: IEEE swarm intelligence symposium, 46–52.
Sengupta, S. (2012). Facebook's Prospects May Rest on Trove of Data. The New York Times. Retrieved May 15, 2012.
Shepard, L. A. (2007). Formative assessment: Caveat emptor. In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning, 279–303.
Thissen, D., & Wainer, H. (2001). Test Scoring. Mahwah, NJ: Erlbaum. Page 1, sentence 1.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11, 342–365
Venkatesh, V.; & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273–315
Wainer, H., Dorans, N. J., Eignor, D., Flaugher, R., Green, B. F., Robert J. Mislevy, R. J., Steinberg, L., Thissen, D. (2000), Computerized Adaptive Testing: A Primer, Second Edition. Quality of Life Research ,10(8) , 733-734.
Weiss, D. J., & Kingsbury, G. G. (1984). Application of computerized adaptive testing to educational problems. Journal of Educational Measurement, 21, 361–375.
Wellman, B., Salaff J., Dimitrova, D., Garton, L., Gulia, M., & Haythornthwaite C. (1996). Computer Networks as Social Networks: Collaborative Work, Telework, and Virtual Community. Annual Review of Sociology, 22(1), 213–238.
Yin, P. Y., Chang, K. C., Hwang, G. J., Hwang, G. H., & Chan, Y. (2006). A particle swarm optimization approach to composing serial test sheets for multiple assessment criteria. Journal of Educational Technology & Society, 9(3), 3–15.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top