跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許豪江
研究生(外文):Hao-ChiangHsu
論文名稱:利用Gabor描述子之複製黏貼竄改影像偵測
論文名稱(外文):Detection of Copy-Move Forgery Image Using Gabor Descriptor
指導教授:王明習
指導教授(外文):Ming-Shi Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:竄改偵測Gabor描述子複製黏貼攻擊
外文關鍵詞:forgery detectionGabor descriptordigital forensics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
隨者科技進步,數位影像容易被人們取得,其內容卻也很容易被更改。因影像內容常被當成犯罪的證據和新聞報導的題材,所以數位影像之真實性問題變成一個重要的議題,本論文提出一個以Gabor濾波器為主的竄改影像偵測系統,借由特徵之提取和分群定位演算法來做竄改影像檢測工作,它能有效的檢測出在同一張影像內將部分內容複製,然後將它經過旋轉和縮放調整後在貼到某個位置之幾何失真攻擊。變換Gabor濾波器之大小與旋轉角度,然後分別將它們與被檢測影像重疊方式切割的影像區塊做摺積分,即可得到各影像區塊之對應的Gabor描述子,這些描述子經過適當運算處理後以提取區塊的特徵和特徵向量。這些特徵和特徵向量用以代表影像區塊,當兩個影像區塊的Gabor描述子相似時,即代表此兩個影像區塊內容相似。如此不僅可以找出影像是否有被竄改嫌疑,也可提供被竄改影像被幾何旋轉之角度和縮放倍率。從實驗結果中顯示本論文所提出的影像竄改偵測系統可以得到很高的檢測正確率,並且可估計出旋轉角度和縮放倍率。
With the advance of science and technology, images are easily accessible to everybody. It is also easy to be changed about the content. Images are usually as criminal evidences and news report. How to make sure if the content is not changed becomes a very important issue. In this research, the Gabor filter is mainly applied to get the features of the image under inspected. It is easy to get the rotation and/or scaling versions of the Gabor filter. An image is divided into overlapped sub-blocks with different block size. Each sub-block is convoluted with a proper Gabor filter with different rotation angle and scaling factor to get the called Gabor descriptor of the sub-block. These Gabor descriptors are conversed as the key point and feature vector of the sub-block. For comparing two sub-blocks, their Gabor descriptors are applied to find if there is any similarity between them. The proposed method not only can locate the duplicated regions precisely, but also estimate the rotation angle and scale factor of the inspected image. Experimental result shows that the proposed method can achieve high detection rate. It is also provided a good estimated rotation angle and scaling factor.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 V
圖目錄 VI
1 緒論 1
1.1 竄改例子說明 1
1.2 研究動機與目的 6
1.3 論文架構 7
2 相關研究和文獻探討 8
2.1 主動式數位鑑識技術 9
2.1.1 數位簽章 9
2.1.2 數位影像浮水印 11
2.2 被動式數位鑑識技術 16
2.2.1 窮舉法 17
2.2.2 特徵點搜尋法 29
3 竄改影像偵測系統 34
3.1 分割影像 36
3.2 提取特徵點和特徵向量 37
3.2.1 Gabor濾波器和特徵空間 37
3.2.2 Gabor描述子 44
3.3 特徵向量匹配 46
3.4 定位竄改 47
4 實驗結果與討論 51
4.1 實驗環境 51
4.2 實驗結果 54
4.2.1 未經旋轉或縮放竄改之偵測結果 54
4.2.2 對被剪裁影像旋轉處理後之竄改偵測 58
4.2.3 對被剪裁影像縮放處理後之竄改偵測 62
4.2.4 對被剪裁影像旋轉和縮放處理後的竄改偵測 68
4.2.5 經由鏡射處理、亮度調整或平滑區域之竄改偵測 72
5 結論與未來研究方向 77
5.1 結論 77
5.2 未來研究方向 78
參考文獻 79
[1] M. Schneider and S.F. Chang, A Robust Content Based Digital Signature for Image Authentication, IEEE International conference on image processing, vol. 3, pp.227-230, 1996.
[2] M. P. Queluz, Authentication of digital image: generic models and a new contribution, Signal Processing Image Communication, vol.16, no. 5, pp. 461-475, Jan. 2001.
[3] C. Kailasanathan, R. S. Naini and P. Ogunbona, Image authentication surviving acceptable modifications using statistical measures and k-mean segmentation, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Jun. 2001
[4] D. C. Lou and J. L. Liu, Fault resilient and compression tolerant digital signature for image authentication, IEEE Transactions on Consumer Electronics, vol. 46, no. 1, pp. 31-39, Feb. 2000.
[5] C. Y. Lin and S. F. Chang, A Robust Image Authentication Method Surviving JPEG loss Compression, SPIE Storage and Retrieval for Image and Video Databases, Jan. 1998.
[6] C. T. Lin and S. F. Chang, Generating robust digital signature for image/video authentication, Multimedia and Security Workshop at ACM Multimedia, UK, Sep. 1998.
[7] C. T. Lin and S. F. Chang, A robust image authentication method distinguishing JPEG compression from malicious manipulation, IEEE Transaction on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 153-168, Feb. 2001.
[8] Y. F. Shih, Digital Watermarking and Steganography, CRC Press, 2007.
[9] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich and T. Kalker, Digital Watermarking and Steganography, 2nd ed., Morgan Kaufmann, 2007.
[10] J. Fridrich, D. Soukal and J. Lukáš, Detection of copy-move forgery in digital images, in Proc. Digital Forensic Research Workshop, Cleveland, USA, 5-8 Aug. 2003.
[11] A. C. Popescu and H. Farid, Exposing digital forgeries by detecting duplicated image regions, Technical Report, TR2004-515, Dartmouth College, Computer Science, 2004.
[12] W. Luo, J. Huang and G. Qiu, Robust Detection of Region-Duplication Forgery in Digital Image, in the 18th International Conference on Pattern Recognition, HK, Sep. 18 2006.
[13] G. Li, Q. Wu, D. Tu and S. Sun, A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD, Proceedings of IEEE International Conference on Multimedia and Expo, Beijing, China, pp. 1750-1753, July 2-5.2007.
[14] Y. Huang, W. Lu, W. Sun and D. Long, Improve DCT-based detection of copy-move forgery in image, Forensic Science International, vol. 206, no. 13, pp. 178-184, Mar. 2011.
[15] G. Liu, J. Wang, S. Lian and Z. Wang, A passive image authentication scheme for detecting region-duplication forgery with rotation, Journal of Network and Computer Applications, vol. 34, no. pp. 1557-1665, Sep. 2011.
[16] M. K. Hu, Visual pattern recognition by moment invariants, IEEE Transactions on Information Theory, vol. 8, no. 2, pp. 179-187, 1962.
[17] A. Khotanzad and Y. Hong, Invariant image recognition by Zernike moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp. 489-497, 1990.
[18] B. Mahdian and S. Saic, Detection of copy-move forgery using a method based on blur moment invariants, Forensic Science International, pp. 180-189, 2007.
[19] S. Bayram, H. T. Sencar and N. Memon, An Efficient and Robust Method For Detecting Copy-Move Forgery, IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.
[20] S. Bravo-Solorio and A. K. Nandi, Automated detection and localisation of duplicated regions affected by reflection, rotation and scaling in image forensics, Signal Processing, vol. 91, no. 8, pp. 1759-1770, Aug. 2011.
[21] S. Bravo-Solorio and A. K. Nandi, Exposing duplicated regions affected by reflection, rotation and scaling, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1880-1883, UK, May 22-27 2011.
[22] 姚詩育, 基於小波描述子之影像重複區域之竄改偵測系統, 國立成功大學工程科學系碩士論文, 2011.
[23] P. Lionel Evina Ekombo, N. Ennahnahi, M. Oumsis and M. Meknassi, Application of affine invariant Fourier descriptor to shape based image retrieval, IJCSNS International Journal of Computer Science and Network Security, vol. 9, no. 7, pp. 240-247, Jul. 2009.
[24] D. Gabor, Theory of communications, Journal of Institution of Electrical Engineers, vol. 93, pp. 429-457, 1964.
[25] H. G. Granlund, In search of a general picture processing operator, Computer Graphics and Image Processing, vol. 8, pp. 155-173, 1978.
[26] G. J. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the optical society of America A, vol. 2, no. 7, pp. 1160-1169, 1985.
[27] R. Mehrotra, K. Namuduri and N. Ranganathan, Gabor filter–based edge detection, Pattern Recognition, vol. 25, no. 12, pp. 1479-1494, 1992.
[28] T. S. Lee, Image representation using 2D Gabor wavelets, IEEE Transactions of Pattern Analysis and Machine Intelligence, vol. 18, no. 10, pp. 959-971, Oct. 1996.
[29] A. K. Jain, N. K. Ratha and S. Lakshmanan, Object detection using gabor filters, Pattern Recognition, vol. 30, pp. 295-309, 1997.
[30] S. Urolagin, K. V. Prema and N. V. Subba Reddy, Rotation Invariant Object Recognition using Gabor Filters, International Conference on Industrial and Information Systems (ICIIS), pp. 404-407, Mangalore, Jul. 29 2010-Aug. 1 2010.
[31] F. Gharibi, J. RavanJamjah, F. Akhlaghian, B. Azami and J. Alirezaie, Robust detection of copy-move forgery using texture features, 2011 19th Iranian Conference on Electrical Engineering (ICEE), pp. 1-4, Tehran, May 17-19 2011.
[32] D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
[33] H. Bay, A. Ess, T. Tuytelaars and L. V. Gool, SURF: Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU), vol. 110, no. 3, pp. 346-359, 2008.
[34] M. Özuysal, P. Fua and V. Lepetit, Fast keypoint recognition in ten lines of code, IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, Minneapolis, MN, Jun. 17-22 2007.
[35] M. Calonder, V. Lepetit, C. Strecha and P. Fua, BRIEF:Binary robust independent elementary features, 11th European Conference on Computer Vision, Heraklion, Crete, Springer, Sep. 2010.
[36] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, ORB:an efficient alternative to SIFT or SURF, IEEE International Conference on Computer Vision (ICCV), pp. 2564-2571, Barcelona, Nov. 6-13 2011.
[37] V. Kyrki and J. K. Kamarainen, Simple Gabor feature space for invariant object recognition, Pattern Recognition Letters, vol. 25, no. 3, pp. 311-318, Feb. 2004.
[38] I. Amerini, L. Ballan, R. Caldelli, A. D. Bimbo and G. Serra, A SIFT-Based Forensic Method for Copy–Move Attack Detection and Transformation Recovery, IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 1099-1110, Sep 2011.
[39] G. Griffin, A. Holub and P. Perona, Caltech-256 object category dataset, Technical Re-port 7694, California Institute of Technology, 2007. [Online]. Available: http://authors.library.caltech.edu/7694right-pointing.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top