[1]J. S. Hsiao, An efficient algorithm for finite-difference analyses of heat transfer with melting and solidification, Numerical Heat Transfer, vol. 8, pp. 653-666, 1985.
[2]M. J. Maurer and H. A. Thompson, Non-Fourier Effects at High Heat Flux, J. Heat Transfer, vol. 95, pp. 284-286, 1973.
[3]D. W. Tang and N. Araki, Non-fourier heat conduction in a finite medium under periodic surface thermal disturbance, International Journal of Heat and Mass Transfer, vol. 39, pp. 1585-1590, 1996.
[4]D. E. Glass , M. Necati Ozisik , S. S. McRae and W. S. Kim Formulation and solution of hyperbolic Stefan problem, Journal of Applied Physics, vol. 70, pp. 1190-1197, 1991.
[5]Fourier , J. B. Joseph and baron The analytical theory of heat New York :Dover Publishers, 1955.
[6]D. D. Joseph and L. Preziosi, Heat wave, Reviews of Modern Physics, vol. 61, pp. 41-73, 1989.
[7]G. Caviglia , A. Morro , and B. Straughan, Thermoelasticity at cryogenic temperatures, International Journal of Non-Linear Mechanics vol. 27, pp. 251-263, 1992.
[8]C. Cattaneo, A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation, Compte Rendus, vol. 47, pp. 431-433, 1958.
[9]P. Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, Compte Rendus, vol. 246, pp. 3154-3155, 1958.
[10]P. Vernotte, Some Possible Complications in the Phenomena of Thermal Conducction, Compte Rendus, vol. 252, pp. 2190-2191, 1961.
[11]D. Y. Tzou, A Unified Field Approach for Heat Conduction from Micro-to Macro-Scales, ASME Journal of Heat Transfer, vol. 117, pp. 8-16, 1995.
[12]D. Y. Tzou, The Generalized Lagging Response in Small-Scale and High-Rate Heating, International Journal of Heat and Mass Transfer, vol. 38, pp. 3231-3240, 1995.
[13]D. Y. Tzou, Experimental Support for the Lagging Response in Heat Propagation, AIAA Journal of Thermophysics and Heat Transfer, vol. 9, pp. 686-693, 1995.
[14]陳寒濤, 混合數值分析法在暫態熱傳上之應用, 博士, 機械工程學系, 國立成功大學, 台灣, 1987.[15]G. Honig and U. Hirdes, A Method for the Numerical Inversion of Laplace Transforms Journal of Computational and Applied Mathematics, vol. 10, pp. 112-132, 1984.
[16]H. T. Chen and J. Y. Lin, Application of the Laplace transform to nonlinear transient problems, Applied Mathematical Modelling, vol. 15, pp. 144-151, 1991.
[17]H. T. Chen and J. Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problems International Journal of Heat and Mass Transfer, vol. 34, pp. 1301-1308, 1991.
[18]H. T. Chen and J. Y. Lin, Application of the hybrid method to transient heat conduction in one-dimensional composite layers Computers & Structures, vol. 39, pp. 451-458, 1991.
[19]H. T. Chen and J. Y. Lin, Application of the Laplace transform to one-dimensional non-linear transient heat conduction in hollow cylinders, Communications in Applied Numerical Methods vol. 7, pp. 241-252, 1991.
[20]J. Y. Lin and H. T. Chen, Radial axisymmetric transient heat conduction in composite hollow cylinders with variable thermal conductivity Engineering Analysis with Boundary Elements, vol. 10, pp. 27-33, 1992.
[21]林傑毓, 解析暫態熱傳問題之新數值方法, 博士, 機械工程學系, 國立成功大學, 台灣, 1994.[22]黃俊誠, 混合拉氏轉換與數值分析法在傅立葉與非傅立葉熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2008.[23]郭晉凱, 混合拉氏轉換法求解相變化熱傳問題, 碩士, 工程科學系, 國立成功大學, 台灣, 2009.[24]張智超, 混合拉氏轉換法求解傅立葉和非傅立葉熱傳導問題, 碩士, 工程科學系, 國立成功大學, 台灣, 2010.[25]D. Y. Tzou, M. N. Ozisik and R. J. Chiffelle The Lattice Temperature In The Microscopic Two-Step Model, ASME Journal of Heat Transfer, vol. 116, pp. 1034-1038, 1994.
[26]G. F. Carey and M. Tsai, Hyperbolic Heat Transfer with Reflection, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology vol. 5, pp. 309-327, 1982.
[27]D. E. Glass , M. N. ziika , D. S. McRaea and Brian Vickb, On the numerical solution of hyperbolic heat conduction, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 497-504, 1985.
[28]F. J. Rizzo and D. J. Shippy, A method of solution for certain problems of transient heat conduction, AIAA J, vol. 8, pp. 2004-2009, 1970.
[29]K. K. Tamma and S. B. Railkar, Specially Tailored Trans Finite-Element Formulations For Hyperbolic Heat Conduction Involving Non-Fourier Effects, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 15, pp. 211-226, 1989.
[30]P. J. Antaki, Solution For Non-Fourier Dual Phase Lag Heat Conduction In A Semi-infinite Slab With Surface Heat flux, International Journal of Heat and Mass Transfer, vol. 41, pp. 2253-2258, 1998.
[31]D. W. Tang , N. Araki and Wavy wavelike, Diffusiiv thermal responses of finite rigid slab to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, vol. 42, pp. 855-860, 1999.
[32]陳良彰, 熱遲滯現象之數值分析, 碩士, 工程科學系, 國立成功大學, 台灣, 2007.[33]M. A. Al-Nimr and M. K. Alkam, Overshooting Phenomenon in the Hyperbolic Microscopic Heat Conduction Model, International Journal of Thermophysics, vol. 24, pp. 577-583, 2002.
[34]M. A. Al-Nimr , Malak NAJI and Salem AL-WARDAT, Overshooting Phenomenon in the Hyperbolic Heat Conduction Model, Japanese Journal of Applied Physics, vol. 42, pp. 5383-5386, 2003.
[35]J. S. Hsiao, An Efficient Algorithm For Finite-Difference Analyses of Heat Transfer with Melting and Solidification, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 653-666, 1985.
[36]A. W. Date, A Strong Enthalpy Formulation for the Stefan Problem, International Journal of Heat and Mass Transfer, vol. 34, pp. 2231-2235, 1991.
[37]V. R. Voller and C. R. Swaminathan, General Source-Based Method for Solidification Phase Change, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 19, pp. 175-189, 1991.
[38]T. C. Tszeng , Y.T. Im and S. Kobayashi, Thermal Analysis of Solidification by the Temperature Recovery Method International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
[39]J. A. Dantzig, Modelling liquid–solid phase changes with melt convection, International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
[40]D. Y. Tzou and Y. Zhang, An Analytical Study on the Fast-transient Process in Small Scales International Journal of Engineering Science, vol. 33, pp. 1449-1463, 1995.
[41]D. Y. Tzou, Deformation Induced Degradation of Thermal Conductivity in Cracked Solids, Journal of Composite Material, vol. 28, pp. 886-901, 1994.
[42]R. J. Chiffelle, On the Wave Behavior and Rate Effect of Thermal and Thermomechanical Waves, Master, University of New Mexico, Albuquerque ,NM, 1994.
[43]M. Chester, Second Sound In Solids, Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, vol. 131, pp. 2013-2015, 1963.
[44]K. J. Baumeister and T. D. Hamill, Hyperbolic Heat Conduction Equation-a Solution for the Semi-infinite Body Problem, ASME Journal of Heat Transfer, vol. 91, pp. 543-548, 1969.
[45]K. J. Baumeister and T. D. Hamill, Hyperbolic Heat Conduction Equation-a Solution for the Semi-infinite Body Problem, ASME Journal of Heat Transfer, vol. 93, pp. 126-128, 1971.
[46]T. M. Shih, Numerical heat transfer. Washington, DC: Hemisphere Publishing Corp., 1984.
[47]G. E. Schneider, Elliptic systems: finite-element method I, Handbook of numerical heat transfer, 1988.
[48]D. A. Anderson , J. C. Tannehill and R. H. Pletcher, Computational fluid mechanics and heat transfer. United States: Hemisphere Publishing,New York, NY, 1984.
[49]H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford: Clarendon Press, 2nd ed., pp. 282-296, 1959.
[50]曾楷倫, 混合拉氏轉換法求解非傅立葉相變化熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2011.[51]Anyaki .P. J. ,Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-infinite Slab with Surface Heat Flux,International journal of Heat and Mass transfer, vol.41,pp.2253-2258,1998
[52]Tang,D.W.,Araki,N.,Wavy,wavelike,Diffusiiv rhermal responses of finite rigid slab to high-speed heating of lase-pulses,Int.J.Heat Mass Transfer,vol.42,pp.855-860,1999
[53]M. Rappaz, “Modeling of microstructure formation in solidification processes,International Materials Reviews, Vol.34,pp. 93-123,1989
[54]J.S. Hsiao,An efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification ,Numerical Heat Transfer,Vol. 8,pp.653-666,1985
[55]A. W. Date,A Strong Enthalpy Formulation for the Stephan Problem ,Internation Journal of heat and mass Transfer, Vol.34,pp.2231-2283,1991.
[56]V. R. Voller and C.R.Swa, “General source based method for solidification phase change, Numerical Heat Transfer, Part B,Vol. 19,pp.175-189,1991.
[57]T. C. Tszeng, Y. T. Im and S. Kobayashi, “Thermal analysis of solidification by the temperature rycovery method,Int.J.Mach.Tools Manufact., Vol.29,pp. 107-120, 1989.
[58]J. A. Dantzig, “Modeling liquid-solid phase changes with melt convection, international Journal of Numerical Methods in Engineering, Vol.28 28,pp.1769-1785,1989.
[59]Anderson,D.A.,Tannehill,J. C. and Pletcher,R.H.,Computational Fluid Mechanics and Heat Trans,Hemisphere,1990