跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧峻德
研究生(外文):Chun-TeLu
論文名稱:混合拉氏轉換法求解雙曲線相變化熱傳問題之研究
論文名稱(外文):Hyperbolic Phase-Change Heat Transfer Problems By Using Hybrid Laplace Transfer Method
指導教授:趙隆山
指導教授(外文):Long-Sun Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:雷射非傅立葉相變化
外文關鍵詞:LaserNon-FourierPhase change
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,在微尺度下之熱傳行為已逐漸受到重視,而探討微觀尺度下之非傅立葉相變化熱傳問題之相關研究並不多,因此本文的主要目的是使用混合拉氏轉換法分析並探討傅立葉及非傅立葉相變化熱傳問題,混合拉氏轉換法為運用黎曼和近似之逆拉氏轉換法搭配有限差分法做數值分析,相變化的潛熱計算則使用溫度回復法,並探討混合數值方法處理雷射非傅立葉熱傳問題的應用及數值疊代的不穩定問題。
∂θ(δ,0)/∂β及(∂^2 θ(δ,0))/(∂^2 δ)為造成數值結果不穩定之原因,因此,本文在處理溫度線性疊代運算時,利用拉氏轉換法搭配控制體積法及有限差分法之數值解反推求得∂θ(δ,0)/∂β及(∂^2 θ(δ,0))/(∂^2 δ)作為修正值,再帶數值回疊代運算,有效解決在時間疊代造成的震盪問題,並進一步計算較複雜的雷射熱源問題。
由本文的計算結果可知,以本文所提出之方法計算非傅立葉熱傳問題,皆有良好的準確性,並可應用於求解較複雜的非傅立葉相變化問題。使用混合拉氏轉換法搭配溫度回復法可準確的計算史蒂芬問題,在求解非傅立葉雙相差雷射熱源問題時,相變化需考慮融化及凝固兩個過程,融化時,雷射的一部份能量被潛熱吸收,造成其高點溫度相對於沒有考慮相變化之非傅立葉雷射熱源熱傳問題低,凝固時,需等待潛熱效應完成後,才繼續熱擴散,使得溫度擴散減緩,因此相對溫度較不考慮相變化之非傅立葉雷射熱源熱傳問題高。

As technology advances, the heat transfer behavior on a micro scale has graduallybeen taken seriously. There is not muchresearch about the micro-scale non-Fourier phase change heat transfer problems.The main focus of this paper is to use the hybrid Laplace transform method to investigate Fourier and non-Fourier phase change heat transfer problems.
Hybrid Laplace transform method is used in the research, with one using Riemann sum approximation based on inverse Laplace transform method and the other using the same Riemann sum approximation and control volume method.The temperature recovery method is applied to solve numerical problem of latent heat in phase-change.To solve non-Fourier heat transfer laser problems, study focuses on the application of hybrid numerical method and the instability ensued from iteration.
∂θ(δ,0)/∂β and (∂^2 θ(δ,0))/(∂^2 δ)can lead to unstable numerical results.As a result, Laplace transform methodis applied alone with control volume method and the finite difference method to acquire modified differential term. Then comes the iteration that effectively resolves the oscillated problem. Without the oscillation, the more complicated laser heat source issue can be addressed.
Using the proposed method of this thesis to calculate the non –Fourier heat transfer problems can obtain anaccurate result and solve more complicated non-Fourier phase change problem.Applying the hybrid Laplace transform method together with temperature recovery method can solve the Steven problemaccurately.
The non-Fourier dual phase laser heat source phase change problem involves two processes: the melting and solidification.In melting, part of the laser energy is absorbed by latent heat, making a relatively higher point in temperature than the point that does not consider phase change.On the other hand, in solidification, the release of latent heat mitigates the thermal diffusion. That makes a relatively higher point in temperature than the point that does not consider phase change.

圖目錄.....................................................IV
表目錄...................................................VIII
致謝......................................................IX
摘要.......................................................X
Abstract.................................................XI
符號說明..................................................XII
希臘字母.................................................XIII
第一章緒論..................................................1
1-1前言....................................................1
1-2文獻回顧.................................................2
1-3研究方法與目的............................................6
第二章逆拉氏轉換之理論分析.....................................8
2-1黎曼和近似之逆拉氏轉換理論分析...............................8
2-2逆拉氏轉換法求解雙曲線熱傳問題..............................10
第三章熱傳問題之數學模式與數值方法..............................16
3-1 混合逆拉氏轉換之數值方法..................................16
3-1-1 有限差分法...........................................16
3-1-2控制體積法............................................18
3-2 雙相差模式有雷射熱源.....................................21
3-2-1有限差分法雙相差模式有雷射熱源............................24
3-2-2控制體積法雙相差模式有雷射熱源............................24
第四章時間疊代之方法.........................................36
4-1 非傅立葉熱傳(熱波模式)時間疊代.............................36
4-2 非傅立葉熱傳(雙相差模式)時間疊代...........................37
4-3 非傅立葉熱傳(雙相差模式有雷射熱源)時間疊代...................37
第五章非傅立葉熱傳相變化問題...................................41
5-1 溫度回復法(凝固問題).....................................42
5-2 運用溫度回復法求解史蒂芬問題...............................43
5-3 溫度回復法(融化問題)...................................45
5-4 史蒂芬問題熱波模式.......................................47
5-5 史蒂芬問題雙相差模式.....................................48
5-6 雙相差模式雷射熱源潛熱效應................................49
第六章結論.................................................64
參考文獻...................................................66

[1]J. S. Hsiao, An efficient algorithm for finite-difference analyses of heat transfer with melting and solidification, Numerical Heat Transfer, vol. 8, pp. 653-666, 1985.
[2]M. J. Maurer and H. A. Thompson, Non-Fourier Effects at High Heat Flux, J. Heat Transfer, vol. 95, pp. 284-286, 1973.
[3]D. W. Tang and N. Araki, Non-fourier heat conduction in a finite medium under periodic surface thermal disturbance, International Journal of Heat and Mass Transfer, vol. 39, pp. 1585-1590, 1996.
[4]D. E. Glass , M. Necati Ozisik , S. S. McRae and W. S. Kim Formulation and solution of hyperbolic Stefan problem, Journal of Applied Physics, vol. 70, pp. 1190-1197, 1991.
[5]Fourier , J. B. Joseph and baron The analytical theory of heat New York :Dover Publishers, 1955.
[6]D. D. Joseph and L. Preziosi, Heat wave, Reviews of Modern Physics, vol. 61, pp. 41-73, 1989.
[7]G. Caviglia , A. Morro , and B. Straughan, Thermoelasticity at cryogenic temperatures, International Journal of Non-Linear Mechanics vol. 27, pp. 251-263, 1992.
[8]C. Cattaneo, A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation, Compte Rendus, vol. 47, pp. 431-433, 1958.
[9]P. Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, Compte Rendus, vol. 246, pp. 3154-3155, 1958.
[10]P. Vernotte, Some Possible Complications in the Phenomena of Thermal Conducction, Compte Rendus, vol. 252, pp. 2190-2191, 1961.
[11]D. Y. Tzou, A Unified Field Approach for Heat Conduction from Micro-to Macro-Scales, ASME Journal of Heat Transfer, vol. 117, pp. 8-16, 1995.
[12]D. Y. Tzou, The Generalized Lagging Response in Small-Scale and High-Rate Heating, International Journal of Heat and Mass Transfer, vol. 38, pp. 3231-3240, 1995.
[13]D. Y. Tzou, Experimental Support for the Lagging Response in Heat Propagation, AIAA Journal of Thermophysics and Heat Transfer, vol. 9, pp. 686-693, 1995.
[14]陳寒濤, 混合數值分析法在暫態熱傳上之應用, 博士, 機械工程學系, 國立成功大學, 台灣, 1987.
[15]G. Honig and U. Hirdes, A Method for the Numerical Inversion of Laplace Transforms Journal of Computational and Applied Mathematics, vol. 10, pp. 112-132, 1984.
[16]H. T. Chen and J. Y. Lin, Application of the Laplace transform to nonlinear transient problems, Applied Mathematical Modelling, vol. 15, pp. 144-151, 1991.
[17]H. T. Chen and J. Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problems International Journal of Heat and Mass Transfer, vol. 34, pp. 1301-1308, 1991.
[18]H. T. Chen and J. Y. Lin, Application of the hybrid method to transient heat conduction in one-dimensional composite layers Computers & Structures, vol. 39, pp. 451-458, 1991.
[19]H. T. Chen and J. Y. Lin, Application of the Laplace transform to one-dimensional non-linear transient heat conduction in hollow cylinders, Communications in Applied Numerical Methods vol. 7, pp. 241-252, 1991.
[20]J. Y. Lin and H. T. Chen, Radial axisymmetric transient heat conduction in composite hollow cylinders with variable thermal conductivity Engineering Analysis with Boundary Elements, vol. 10, pp. 27-33, 1992.
[21]林傑毓, 解析暫態熱傳問題之新數值方法, 博士, 機械工程學系, 國立成功大學, 台灣, 1994.
[22]黃俊誠, 混合拉氏轉換與數值分析法在傅立葉與非傅立葉熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2008.
[23]郭晉凱, 混合拉氏轉換法求解相變化熱傳問題, 碩士, 工程科學系, 國立成功大學, 台灣, 2009.
[24]張智超, 混合拉氏轉換法求解傅立葉和非傅立葉熱傳導問題, 碩士, 工程科學系, 國立成功大學, 台灣, 2010.
[25]D. Y. Tzou, M. N. Ozisik and R. J. Chiffelle The Lattice Temperature In The Microscopic Two-Step Model, ASME Journal of Heat Transfer, vol. 116, pp. 1034-1038, 1994.
[26]G. F. Carey and M. Tsai, Hyperbolic Heat Transfer with Reflection, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology vol. 5, pp. 309-327, 1982.
[27]D. E. Glass , M. N. ziika , D. S. McRaea and Brian Vickb, On the numerical solution of hyperbolic heat conduction, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 497-504, 1985.
[28]F. J. Rizzo and D. J. Shippy, A method of solution for certain problems of transient heat conduction, AIAA J, vol. 8, pp. 2004-2009, 1970.
[29]K. K. Tamma and S. B. Railkar, Specially Tailored Trans Finite-Element Formulations For Hyperbolic Heat Conduction Involving Non-Fourier Effects, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 15, pp. 211-226, 1989.
[30]P. J. Antaki, Solution For Non-Fourier Dual Phase Lag Heat Conduction In A Semi-infinite Slab With Surface Heat flux, International Journal of Heat and Mass Transfer, vol. 41, pp. 2253-2258, 1998.
[31]D. W. Tang , N. Araki and Wavy wavelike, Diffusiiv thermal responses of finite rigid slab to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, vol. 42, pp. 855-860, 1999.
[32]陳良彰, 熱遲滯現象之數值分析, 碩士, 工程科學系, 國立成功大學, 台灣, 2007.
[33]M. A. Al-Nimr and M. K. Alkam, Overshooting Phenomenon in the Hyperbolic Microscopic Heat Conduction Model, International Journal of Thermophysics, vol. 24, pp. 577-583, 2002.
[34]M. A. Al-Nimr , Malak NAJI and Salem AL-WARDAT, Overshooting Phenomenon in the Hyperbolic Heat Conduction Model, Japanese Journal of Applied Physics, vol. 42, pp. 5383-5386, 2003.
[35]J. S. Hsiao, An Efficient Algorithm For Finite-Difference Analyses of Heat Transfer with Melting and Solidification, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, vol. 8, pp. 653-666, 1985.
[36]A. W. Date, A Strong Enthalpy Formulation for the Stefan Problem, International Journal of Heat and Mass Transfer, vol. 34, pp. 2231-2235, 1991.
[37]V. R. Voller and C. R. Swaminathan, General Source-Based Method for Solidification Phase Change, Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 19, pp. 175-189, 1991.
[38]T. C. Tszeng , Y.T. Im and S. Kobayashi, Thermal Analysis of Solidification by the Temperature Recovery Method International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
[39]J. A. Dantzig, Modelling liquid–solid phase changes with melt convection, International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
[40]D. Y. Tzou and Y. Zhang, An Analytical Study on the Fast-transient Process in Small Scales International Journal of Engineering Science, vol. 33, pp. 1449-1463, 1995.
[41]D. Y. Tzou, Deformation Induced Degradation of Thermal Conductivity in Cracked Solids, Journal of Composite Material, vol. 28, pp. 886-901, 1994.
[42]R. J. Chiffelle, On the Wave Behavior and Rate Effect of Thermal and Thermomechanical Waves, Master, University of New Mexico, Albuquerque ,NM, 1994.
[43]M. Chester, Second Sound In Solids, Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, vol. 131, pp. 2013-2015, 1963.
[44]K. J. Baumeister and T. D. Hamill, Hyperbolic Heat Conduction Equation-a Solution for the Semi-infinite Body Problem, ASME Journal of Heat Transfer, vol. 91, pp. 543-548, 1969.
[45]K. J. Baumeister and T. D. Hamill, Hyperbolic Heat Conduction Equation-a Solution for the Semi-infinite Body Problem, ASME Journal of Heat Transfer, vol. 93, pp. 126-128, 1971.
[46]T. M. Shih, Numerical heat transfer. Washington, DC: Hemisphere Publishing Corp., 1984.
[47]G. E. Schneider, Elliptic systems: finite-element method I, Handbook of numerical heat transfer, 1988.
[48]D. A. Anderson , J. C. Tannehill and R. H. Pletcher, Computational fluid mechanics and heat transfer. United States: Hemisphere Publishing,New York, NY, 1984.
[49]H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford: Clarendon Press, 2nd ed., pp. 282-296, 1959.
[50]曾楷倫, 混合拉氏轉換法求解非傅立葉相變化熱傳問題之研究, 碩士, 工程科學系, 國立成功大學, 台灣, 2011.
[51]Anyaki .P. J. ,Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-infinite Slab with Surface Heat Flux,International journal of Heat and Mass transfer, vol.41,pp.2253-2258,1998
[52]Tang,D.W.,Araki,N.,Wavy,wavelike,Diffusiiv rhermal responses of finite rigid slab to high-speed heating of lase-pulses,Int.J.Heat Mass Transfer,vol.42,pp.855-860,1999
[53]M. Rappaz, “Modeling of microstructure formation in solidification  processes,International Materials Reviews, Vol.34,pp. 93-123,1989
[54]J.S. Hsiao,An efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification ,Numerical Heat Transfer,Vol. 8,pp.653-666,1985
[55]A. W. Date,A Strong Enthalpy Formulation for the Stephan Problem ,Internation Journal of heat and mass Transfer, Vol.34,pp.2231-2283,1991.
[56]V. R. Voller and C.R.Swa, “General source based method for solidification phase change, Numerical Heat Transfer, Part B,Vol. 19,pp.175-189,1991.
[57]T. C. Tszeng, Y. T. Im and S. Kobayashi, “Thermal analysis of solidification by the temperature rycovery method,Int.J.Mach.Tools Manufact., Vol.29,pp. 107-120, 1989.
[58]J. A. Dantzig, “Modeling liquid-solid phase changes with melt convection, international Journal of Numerical Methods in Engineering, Vol.28 28,pp.1769-1785,1989.
[59]Anderson,D.A.,Tannehill,J. C. and Pletcher,R.H.,Computational Fluid   Mechanics and Heat Trans,Hemisphere,1990

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊