跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅涵
研究生(外文):Ya-HanChang
論文名稱:互補品考慮間接網路外部性之共擴散模型研究
論文名稱(外文):A study of co-diffusion model for complementary goods with indirect network externality
指導教授:耿伯文耿伯文引用關係
指導教授(外文):Victor B. Kreng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:互補品間接網路外部性共擴散模型
外文關鍵詞:ComplementIndirect network externalityCo-diffusion model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:1
隨著科技日新月異,手機的產品生命週期日漸縮短,近年來智慧型手機崛起,消費者挑選手機也以智慧型手機為優先,從Apple推出App store和Google推出Android market來刺激智慧型手機產業發展來看,我們可以發現智慧型手機的銷售量與應用軟體商店的應用軟體數量成長有密切的關連性。隨著創新商業模式的建立,可以看出手機銷售量的成長關鍵因素,已從過去的手機硬體本身層面轉變為所提供的相容軟體及附加服務層面。
在市場上,創新產品的擴散情形一直是企業所欲瞭解的,瞭解市場上產品擴散的脈動才能掌握市場未來之需求,而智慧型手機與應用軟體商店所搭配的這類型商業模式是透過互補品間的間接網路外部性效果互相連結的,互補品是指兩種產品必須互相配合,才能共同滿足消費者的同一種需求,而間接網路外部性是指某種產品對用戶的價值隨著採用週邊相容性產品或互補性產品服務的用戶增加而增加,因此本研究希望透過共擴散模型,探討互補品之間擴散相互影響之關係,欲瞭解互補品之間擴散是如何互相牽引對方,並藉由開放性與封閉性智慧型手機之商業模式進行實證研究分析,同時比較其兩者商業模式下互補品之相互影響關係之不同。
本研究發現加入間接網路外部性影響之後,對於市場潛量的參數估計更準確,修正模型所估計出來的市場潛量對於共擴散模型的模型配適度與解釋能力皆比Bass模型更準確,透過共擴散模型可以了解互補品之間在擴散過程影響關係。另一方面,分析開放性及封閉性智慧型手機之商業模式,可以發現兩不同商業模式受大眾媒體影響、口碑傳播影響、互補品影響之關係,因此廠商可依據模型參數估計的結果,作為後續企業擬定行銷策略和選擇不同商業模式的參考依據。

With the advance of technology, the product lifecycle of mobile phones has been shorted. In recent years, smart phone rose and grew very fast. Consumers turn to and purchase smart phone more prior. In this case, Apple introduced app store and Google introduced android market to stimulate the smart phone industry development, we can dig out that close relationship between smart phone sales and application store app quantity .By establishing the innovative business model, we can find out the key factors of smart phone sales growth have been changed from phone hardware devices into compatible software and additional services provided. Product diffusion trend in the market can help to control the demands of market in the future. Take smart phone and application store for example, it depends on the availability of complementary products. The effort is referred to as indirect network externalities. This study uses co-diffusion to investigate the interactions among complementary products, and the co-diffusion model is applied to forecast the open type and close type smart phone business model, and compare the difference between them.
This study present the result of adding indirect network externality effect, the estimated parameters for the market potential is more accurate. Performing co-diffusion model can help to discover the interaction between the relationship for complementary products. By analysing the two different business models, this study reveals these two different business model are differently influenced by mass communication, the impact of word of mouth spread, and complementary product affect. As the result, company can follow the estimated parameters generated from addressed model as a reference for enterprises to determine marketing strategy and select different business model.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究流程 3
第二章 文獻回顧 5
第一節 創新擴散及其模型 5
第二節 網路外部性(NETWORK EXTERNALITY)與其相關研究 20
第三節 共擴散模型(CO-DIFFUSION MODEL) 22
第四節 擴散模型之參數估計 26
第三章 研究方法 31
第一節 研究架構 31
第二節 參數說明 33
第三節 模型建立 34
第四節 參數估計方法與模型評估準則 38
第四章 實證結果與分析 42
第一節 開放性手機和封閉性手機之商業模式介紹 42
第二節 模型之參數估計與配適能力 46
第五章 結論與建議 64
第一節 研究結論 64
第二節 未來研究方向 67
參考文獻 68

Bass, F. M., & Krishnan, T. V. (1992). A generalization of the bass model: decision variable consideration. Working Paper Series, 50-6-92,University of Texas in Dallas.
Bass, F. M., & Krishnan, T. V. (1992). A generalization of the bass model: decision variable consideration. University of Texas in Dallas.
Bayus, B. L. (1987). Forecasting sales of new contingent products: An application to the compact disc market. Journal of Product Innovation Management, 4(4), 243-255.
Bucklin, L. P., & Sengupta, S. (1993). The co-diffusion of complementary innovations: Supermarket scanners and UPC symbols. Journal of Product Innovation Management, 10(2), 148-160.
Bulte, C. v. d. (2000). New Product Diffusion Acceleration: Measurement and Analysis. Marketing Science, 19(4), 366-380.
Chun, S. Y., & Hahn, M. (2008). A diffusion model for products with indirect network externalities. Journal of Forecasting, 27(4), 357-370.
Church, J., Gandal, N., & Krause, D. (2008). Indirect Network Effects and Adoption Externalities. Review of Network Economics, 7(3), 337-358.
Dewan, S., Ganley, D., & Kraemer, K. L. (2009). Complementarities in the Diffusion of Personal Computers and the Internet: Implications for the Global Digital Divide. Information Systems Research, 1-17.
Farrell, J., & Saloner, G. (1985). Standardization, Compatibility, and Innovation. The RAND Journal of Economics, 16(1), 70-83.
Gatignon, H., Eliashberg, J., & Robertson, T. S. (1989). Modeling Multinational Diffusion Patterns: An Efficient Methodology. Marketing Science, 8(3), 231-247.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning: Addison-Wesley.
Goolsbee, A., & Klenow, Peter J. (2002). Evidence on Learning and Network Externalities in the Diffusion of Home Computers. Journal of Law and Economics, 45(2), 317-343.
Gupta, S., Jain, D. C., & Sawhney, M. S. (1999). Modeling the Evolution of Markets with Indirect Network Externalities: An Application to Digital Television. Marketing Science, 18(3), 396-416.
Jain, D. C., & Rao, R. C. (1990). Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings. Journal of Business & Economic Statistics, 8(2), 163-170.
Jones, J. M., & Ritz, C. J. (1991). Incorporating distribution into new product diffusion models. International Journal of Research in Marketing, 8(2), 91-112.
Kalish, S. (1985). A New Product Adoption Model with Price, Advertising, and Uncertainty. Management Science, 31(12), 1569-1585.
Kalish, S., & Lilien, G. L. (1986). A Market Entry Timing Model for New Technologies. Management Science, 32(2), 194-205.
Kamakura, W. A., & Ealasubramanian, S. K. (1987). Long-term forecasting with innovation diffusion models: The impact of replacement purchases. Journal of Forecasting, 6(1), 1-19.
Katz, M. L., & Shapiro, C. (1985). Network Externalities, Competition, and Compatibility. The American Economic Review, 75(3), 424-440.
Katz, M. L., & Shapiro, C. (1992). Product Introduction with Network Externalities. The Journal of Industrial Economics, 40(1), 55-83.
Kurawarwala, A. A., & Matsuo, H. (1998). Product Growth Models for Medium-Term Forecasting of Short Life Cycle Products. Technological Forecasting and Social Change, 57(3), 169-196.
Lee, M., Kim, K., & Cho, Y. (2010). A study on the relationship between technology diffusion and new product diffusion. Technological Forecasting and Social Change, 77(5), 796-802.
Levitt, T. (1980). Marketing Success through Differentiation of Anything. Harvard Business Review, 58(1), 83-91.
Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion Models in Marketing: A Review and Directions for Research. The Journal of Marketing, 54(1), 1-26.
Mahajan, V., Muller, E., & Kerin, R. A. (1984). Introduction Strategy for New Products with Positive and Negative Word-of-Mouth. Management Science, 30(12), 1389-1404.
Mahajan, V., & Peterson, R. A. (1978). Innovation Diffusion in a Dynamic Potential Adopter Population. Management Science, 24(15), 1589-1597.
Mahajan, V., & Peterson, R. A. (1979). Integrating time and space in technological substitution models. Technological Forecasting and Social Change, 14(3), 231-241.
Masaru, T., & Satoshi, M. (2009). Daily demand forecasting of new products utilizing diffusion models and genetic algorithms. Paper presented at the Proceedings of the 2009 ACM symposium on Applied Computing, Honolulu, Hawaii.
Niculescu, M. F., & Whang, S. (2009). Co-Diffusion of Wireless Voice and Data Services:The Case of the Japanese Market.
Norton, J. A., & Bass, F. M. (1987). A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products. Management Science, 33(9), 1069-1086.
Norton, J. A., & Bass, F. M. (1992). Evolution of Technological Generations: The Law of Capture. Sloan Management Review, 66-77.
Rau, H., Huang, H.-C., & Chen, C.-W. (2004). Using Genetic Algorithm to Explore the Forecasting Capability of the Multi-Generation Diffusion Model. Chung Yuan Journal (Humanities and Social Science)
Robinson, B., & Lakhani, C. (1975). Dynamic Price Models for New-Product Planning. Management Science, 21(10), 1113-1122.
Rogers, E. M. (1983). Diffusion of Innovations (third Ed ed.). New York: The Free Press.
Rogers, E. M. (1995). Diffusion of innovations (4th ed. ed.). New York: Free Press.
Rohlfs, J. (1974). A Theory of Interdependent Demand for a Communications Service. The Bell Journal of Economics and Management Science, 5(1), 16-37.
Schmittlein, D. C., & Mahajan, V. (1982). Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance. Marketing Science, 1(1), 57-78.
Simon, H., & Sebastian, K.-H. (1987). Diffusion and Advertising: The German Telephone Campaign. Management Science, 33(4), 451-466.
Srinivasan, V., & Mason, C. H. (1986). Nonlinear Least Squares Estimation of New Product Diffusion Models. Marketing Science, 5(2), 169-178.
Tellis, G. J., Stremersch, S., & Yin, E. (2003). The International Takeoff of New Products: The Role of Economics, Culture and Country Innovativeness. Marketing Science, 22(2), 188–208.
Varadarajan, P. R. (1986). Horizontal Cooperative Sales Promotion - a Framework for Classification and Additional Perspectives. Journal of Marketing, 50(2), 61-73.
Venkatesan, R., & Kumar, V. (2002). A genetic algorithms approach to growth phase forecasting of wireless subscribers. International Journal of Forecasting, 18(4), 625-646.
Xie, J., & Sirbu, M. (1995). Price Competition and Compatibility in the Presence of Positive Demand Externalities. Management Science, 41(5), 909-926.
章國正. (2008). 網路口碑對創新產品擴散之影響-以美國電影為例. 暨南大學.
陳玉倫. (2006). 科技產業中互補(附屬)產品之創新擴散研究-以DRAM及電腦為例. 元智大學.
黃凱民. (2006). 具網路外部性產業之研究-以電視遊戲機產業為例. 中山大學.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top