跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳孟珊
研究生(外文):Meng-ShanWu
論文名稱:感測式校園節能系統之導入規劃與效能分析
論文名稱(外文):Implementation Plan and Effectiveness Analysis of a Sensor Embedded Campus Energy-saving System
指導教授:呂執中呂執中引用關係
指導教授(外文):Jr-Jung Lyu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:建築物能源管理系統校園節能熱舒適系統動態學
外文關鍵詞:Building and Energy Management SystemCampus Energy-savingThermal ComfortSystem Dynamics
相關次數:
  • 被引用被引用:3
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
環境保護的聲浪不斷高漲,如何有效地使用能源是近年來備受重視的議題,人們大部份的時間都待在建築物中,並使用各種環境設施來達到空間的舒適度,藉著消耗能源來換取舒適的室內空間儼然成為常態,而在能源效率與舒適環境間該如何進行評估及取捨便顯得相當重要。以既有建築物而言,可藉由感測設備來監控能源的使用情形,進一步達到能源控管之目的,根據統計全球建築物每年消耗百分之四十的世界能源,而其中學校的耗電情形備受重視,各大專院校提供了完善的空調設備,但由於學生人數眾多,難以掌控教室能源之浪費,無形中造成了許多電力的損耗。政府亦積極推動學校相關的節約能源政策及獎勵方案,因此,如何節約學校空調之耗電量是相當重要的。
以學校環境為例,發展一系列流程來進行耗能問題分析,考量節約能源及環境舒適度,藉由系統動態學的回饋性結構來進行闡釋,以因果關係圖來說明現實世界的循環情況,規劃如何將節能模組導入及應用於校園環境中,透過現況診斷、環境勘查與系統分析,歸納出相關設備資訊及導入建議,再建構系統動態學模型來呈現節能感測設備導入之情形,描繪空間的溫度、舒適度及空調等電器耗能的動態變化,並加入不同氣候變化的情境來進行模擬,分析有無導入節能設備之耗電情形。本研究提出之導入規劃流程可以用來協助校園發展節能系統,運用系統動態學可以有效瞭解環境變化,提供評估準則來計算成本效益,模擬結果顯示,不論外界氣溫較高或較低,皆可透過能源管理排程設定來進行改善,證實導入感測式校園節能系統具有其節能成效,但導入節能設備需達到一定的經濟規模,才能符合成本效益。

The topic of environmental protection is becoming more and more critical, and how to use energy effectively is getting more seriously concern for the past few years. People spend most of time staying indoors, using all kinds of environmental facilities to get comfort. Hence, that comfort interior space is improved by using energy is a common situation, and how to trade-off between energy efficiency and comfortable environment is important especially.
As far as existing buildings are concerned, people can monitor the amount of energy consumption by sensors, and attain the purpose of energy control. According to statistics, global buildings consume 40% energy per year, and the situation of consuming electricity on campus is taken seriously. Universities and colleges provide well-appointed air-conditioning systems, but the number of students is too many to control energy wasting in classrooms. As a result, the governments also establish policies which are related to energy-saving and incentive systems. Therefore, saving electricity is fairly important. This study takes school environment for example, and develops a series of processes to analyze energy consumption. Through the diagnosis of current status and systems analysis, this research plans to set up energy-saving module and applies it to school environment, and makes related suggestions. Then construct System Dynamics models to illustrate the change of energy-saving sensors by using different climate scenarios to simulate the results. At last, analyze the diversity after using energy-saving facilities. The results show that using a sensor embedded campus energy-saving system can provide the evaluation criteria to calculate the cost-benefit and bring the benefit of saving energy.

摘 要 I
Abstract II
誌 謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究範圍與限制 4
第四節 研究流程 5
第二章 文獻回顧 7
第一節 建築物能源管理 7
2.1.1 能源使用概論 7
2.1.2 建築節能 10
2.1.3 建築物能源管理系統 12
第二節 學校能源使用概況 17
2.2.1 學校用電 17
2.2.2 校園節能政策 19
第三節 熱舒適度 21
2.3.1 人體熱負荷與熱舒適 21
2.3.2 舒適度定義 24
第四節 系統動態學 28
2.4.1 理論緣起 28
2.4.2 系統動態學模型 29
第五節 文獻小結 33
第三章 系統導入規劃 34
第一節 節能模式架構 34
第二節 需求及規劃 37
第三節 系統分析與導入步驟 40
3.3.1 初始階段 40
3.3.2 規劃階段 46
第四節 討論 53
第四章 效能分析 54
第一節 情境說明 54
第二節 模型建構 57
第三節 模擬分析 63
4.3.1 系統動態學模型分析 63
4.3.2 節能經濟效益分析 66
第四節 小結 70
第五章 結論及未來研究方向 72
第一節 結論 72
第二節 未來研究方向 74
參考文獻 75
中文文獻:
林逸群. (2002). 應用專家系統於中央空調系統之故障診斷. 國立台北科技大學電機工程系碩士論文.
范植賢. (2003). 建築物能源管理診斷專家系統. 國立台北科技大學冷凍與低溫科技研究所碩士論文.
侯世光. (2009). 大學校園節約能源的規劃與實踐. 台灣教育.
財團法人台灣綠色生產力基金會. (2008). 空調系統管理與節能手冊.
財團法人台灣綠色生產力基金會. (2008). 建築能源管理(BEMS)節能手冊.
財團法人台灣綠色生產力基金會. (2010). 電壓調整控制器節能應用技術手冊.
楊冠雄. (2007). 台灣地區BEMS標準化之建立與應用分析. 2007 能源與冷凍空調學術研討會.
經濟部能源局. (2007). 我國能源科技發展政策目標及推動現況. 能源科技研究發展白皮書.
經濟部能源局. (2009). 我國能源資通訊產業之發展.
經濟部能源局. (2009). 政府機關及學校全面節能減碳措施.
經濟部能源局. (2006). 政府機關學校耗能指標指導手冊.
經濟部能源局. (2006). 建築用戶用電參考指標.
英文文獻:
Ahmed, A., Korres, N. E., Ploennigs, J., Elhadi, H., & Menzel, K., (2011), Mining building performance data for energy-efficient operation, Advanced Engineering Informatics, Vol. 25, 2, pp. 341-354.
Alcalá, R., Casillas, J., Cordón, O., González, A., & Herrera, F., (2005), A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems, Engineering Applications of Artificial Intelligence, Vol. 18, 3, pp. 279-296.
ASHRAE, (1997), Thermal Comfort, ASHRAE handbook Fundamental.
ASHRAE, (2004), ASHRAE standard 55: Thermal environment conditions for human occupancy, ASHRAE: Atlanta.
Brambley, M. R., Chassin, D. P., Gowri, K., Kammers, B., & Branson, D. J., (2000), DDC and the Web. Ashrae Journal, Vol. 42, 12, pp. 38-50.
Cai, Y. P., Huang, G. H., Lin, Q. G., Nie, X. H., & Tan, Q., (2009), An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty, Expert Systems with Applications, Vol. 36, 2, Part 2, pp. 3470-3482.
Chung, W., Hui, Y. V., & Lam, Y. M., (2006), Benchmarking the energy efficiency of commercial buildings, Applied Energy, Vol. 83, 1, pp. 1-14.
Clarke, J. A., Cockroft, J., Conner, S., Hand, J. W., Kelly, N. J., Moore, R., O’Brien, T., & Strachan, P., (2002), Simulation-assisted control in building energy management systems, Energy and Buildings, Vol. 34, 9, pp. 933-940.
De Marco, A., Cagliano, A. C., Nervo, M. L., & Rafele, C., (2012), Using System Dynamics to assess the impact of RFID technology on retail operations, International Journal of Production Economics, Vol. 135, 1, pp. 333-344.
Doukas, H., Patlitzianas, K. D., Iatropoulos, K., & Psarras, J., (2007), Intelligent building energy management system using rule sets, Building and Environment, Vol. 42, 10, pp. 3562-3569.
Dounis, A. I., & Caraiscos, C., (2009), Advanced control systems engineering for energy and comfort management in a building environment—A review, Renewable and Sustainable Energy Reviews, Vol. 13, 6-7, pp. 1246-1261.
Erlandson, T., Cena, K., de Dear, R., & Havenith, G., (2003), Environmental and human factors influencing thermal comfort of office occupants in hot-humid and hot-arid climates, Ergonomics, Vol. 46, 6, pp. 616-628.
Fanger, P. O., (1972), Thermal comfort, McGraw-Hill: Atlanta.
Forrester, J. W., (1961), Industrial dynamics, Cambridge, Mass: M.I.T. Press.
Forrester, J. W., (1991), System dynamic and the Lessons of 35 Years.
Freire, R. Z., Oliveira, G. H. C., & Mendes, N., (2008), Predictive controllers for thermal comfort optimization and energy savings, Energy and Buildings, Vol. 40, 7, pp. 1353-1365.
Fung, W. Y., Lam, K. S., Hung, W. T., Pang, S. W., & Lee, Y. L., (2006), Impact of urban temperature on energy consumption of Hong Kong, Energy, Vol. 31, 14, pp. 2623-2637.
Humphreys, M. A., & Fergus Nicol, J., (2002), The validity of ISO-PMV for predicting comfort votes in every-day thermal environments, Energy and Buildings, Vol. 34, 6, pp. 667-684.
Hwang, R.-L., Lin, T.-P., & Kuo, N.-J., (2006), Field experiments on thermal comfort in campus classrooms in Taiwan, Energy and Buildings, Vol. 38, 1, pp. 53-62.
International Energy Agency, (2006a), Energy Policies of IEA Countries - 2006 Review.
International Energy Agency, (2006b), Energy Technology Prospects.
International Energy Agency, (2006c), World Energy Outlook 2006.
International Energy Agency, (2007), Medium-Term Oil Market Report.
ISO, (1995), Moderate thermal environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort, ISO Standard 7730. Geneva: International Standardization Organization.
ISO, (1995b), Ergonomics of the Thermal Environment - Estimation of the thermal insulation and evporative resistance of a clothing ensemble, ISO Standard 9920. Geneva: International Standardization Organization.
Kaldorf, S., & Gruber, P., (2002), Practical Experiences form Developing and Implementing an Expert System Diagnostic Tool, ASHRAE Transactions.
Khaji, M. R., & Shafaei, R., (2011), A system dynamics approach for strategic partnering in supply networks, International Journal of Computer Integrated Manufacturing, Vol. 24, 2, pp. 106-125.
Kim, K., Kim, B. S., & Park, S., (2007), Analysis of design approaches to improve the comfort level of a small glazed-envelope building during summer, Solar Energy, Vol. 81, 1, pp. 39-51.
Kosonen, R., & Tan, F., (2004), Assessment of productivity loss in air-conditioned buildings using PMV index, Energy and Buildings, Vol. 36, 10, pp. 987-993.
McNall, P. E., Jaax, J., Rohles, F. H., and Nevins, R. G., (1967), Thermal comfort (thermally neutral) conditions for three levels of activity, ASHRAE Transaction, Vol. 73, 1, pp. 143-150.
Meyers, S., Mills, E., Chen, A., & Demsetz, L., (1996), Building data visualization for diagnostics, Ashrae Journal-American Society of Heating Refrigerating and Air-Conditioning Engineers, Vol. 38, 6, pp. 63-71.
Mui, K. W. H., & Chan, W. T. D., (2003), Adaptive comfort temperature model of air-conditioned building in Hong Kong, Building and Environment, Vol. 38, 6, pp. 837-852.
Nicol, F., & Roaf, S., (2005), Post-occupancy evaluation and field studies of thermal comfort, Building Research & Information, Vol. 33, 4, pp. 338-346.
Patterson, M. G., (1996), What is energy efficiency? Concepts, indicators and methodological issues, Energy Policy, Vol. 24, 5, pp. 377-390.
Peeters, L., Dear, R. d., Hensen, J., & D’haeseleer, W., (2009), Thermal comfort in residential buildings: Comfort values and scales for building energy simulation, Applied Energy, Vol. 86, 5, pp. 772-780.
Ploennigs, J., Ahmed, A., Hensel, B., Stack, P., & Menzel, K., (2011), Virtual sensors for estimation of energy consumption and thermal comfort in buildings with underfloor heating, Advanced Engineering Informatics, Vol. 25, 4, pp. 688-698.
Rabelo, L., Helal, M., Jones, A., & Min, H.-S., (2005), Enterprise simulation: a hybrid system approach, International Journal of Computer Integrated Manufacturing, Vol. 18, 6, pp. 498-508.
Sterman, J., (2000), Business dynamics : systems thinking and modeling for a complex world, Boston: Irwin/McGraw-Hill.
Urge-Vorsatz, D., & Novikova, A., (2008), Potentials and costs of carbon dioxide mitigation in the world's buildings, Energy Policy, Vol. 36, 2, pp. 642-661.
Wei, S., Li, M., Lin, W., & Sun, Y., (2010), Parametric studies and evaluations of indoor thermal environment in wet season using a field survey and PMV–PPD method, Energy and Buildings, Vol. 42, 6, pp. 799-806.
Yao, Y., Lian, Z. W., Hou, Z. J., & Zhou, X. J., (2004), Optimal operation of a large cooling system based on an empirical model, Applied Thermal Engineering, Vol. 24, 16, pp. 2303-2321.
Zhao, R., Sun, S., & Ding, R., (2004), Conditioning strategies of indoor thermal environment in warm climates, Energy and Buildings, Vol. 36, 12, pp. 1281-1286.
網站資料:
中央氣象局全球資訊網 http://www.cwb.gov.tw/V7/index.htm
內政部統計處 http://www.moi.gov.tw/stat/index.aspx
台灣電力公司 http://www.taipower.com.tw/
行政院環境保護署 http://www.epa.gov.tw/
經濟部能源局網站http://www.moeaboe.gov.tw/

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top