跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭斐芳
研究生(外文):Fei-FangKuo
論文名稱:以模擬方法解決在考慮服務水準下之二階層可維修商品庫存系統問題
論文名稱(外文):Using Simulation Method to Solve a Two-Echelon Repairable Inventory System Problem Subject to Service Constraints
指導教授:蔡青志
指導教授(外文):Shing-Chih Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:45
中文關鍵詞:多階層存貨系統模擬最佳化排序與選擇程序迴歸模型
外文關鍵詞:Multi-echelon inventory systemSimulation optimizationRanking and selectionRegression model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
多階層存貨系統(Multi-echelon Inventory System)問題的研究在生產管理領域中一直以來是個熱門的議題。Sherbrooke(1986)提出多階層可維修備用件庫存模式(Multi-Echelon Technique for Recoverable Item Control;METRIC)以來,許多學者紛紛致力於此議題,從其豐富的文獻中,可窺見此議題的重要性。本研究將針對兩階層可維修商品庫存系統問題進行探討,此存貨系統有一個總倉庫和多個服務站。當顧客的機器零件損壞時,服務站就需替顧客更換一個好的零件,並依據(S-1,S)存貨政策由總倉進行補貨。同時總倉也是維修中心。本研究是希望在滿足各個服務站反應時間的門檻下,找出各服務站及總倉最佳的存貨量使系統的總存貨成本達到最小化。

本研究將使用迴歸模型結合排序與選擇程序(Ranking and
Selection;R&S)來處理解空間較小的問題。由於本研究考慮之問題為一個確切的目標式和多條隨機限制式且具有龐大的解空間,若使用排序與選擇程序處理可能需花費龐大的樣本數且解的品質也不佳。過去的相關文獻中,多是以等候理論為基礎發展近似的方法來處理多階層存貨系統問題,它的缺點是近似過程中會使解有誤差或為不可行解。有鑑於此,我們發展最佳化模擬演算法結合迴歸模型(Regression Model)和排序與選擇程序來求解。

In the field of production management,the study of multi-echelon inventory system has been a hot topic. We study a two-echelon repairable inventory system, which contains a central warehouse and multiple field depots that stock spare parts. When a failure occurs,the field depots serve the customers with part replacement and replenish their inventory from the central warehouse, following a base stock policy. The central warehouse also acts as a repair
facility, and replenishes its inventory by repairing the defective parts passed by the field depots. The goal of our research is to find the best stocking levels in the central warehouse and field depots to minimize the system-wide inventory investment while maintaining an acceptable level of the expected response time over multiple field depots.

A two-echelon inventory system problem consists a deterministic objective function and stochastic constraints in our study. The problem we formulated has relatively large solution space; however,ranking and selection procedure (R&S) is mainly applied for the problem with a small number of solutions. Therefore, we propose a simulation optimization algorithm that combines regression models and R&S to solve the problem.

We integrate regression models and R&S in our approach, which has never been proposed in solving simulation optimization problems to our knowledge and provide numerical results to show the efficiency of our proposed method.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文架構 4
第二章 文獻探討 5
2.1 多階層可維修零件存貨系統問題 5
2.2 模擬最佳化 7
2.2.1 線性迴歸分析 9
2.2.2 可行性驗證程序 12
2.3 小結 17
第三章 研究方法 19
3.1 存貨系統問題 19
3.2 迴歸模型處理兩階層可維修零件存貨系統問題 24
3.3 小結 28
第四章 實驗情境與分析 29
4.1 實驗評估 29
4.2 實驗情境 30
4.3 實驗結果 31
第五章 結論與未來研究方向 37
5.1 論文總結與貢獻 37
5.2 未來研究方向 37
參考文獻 39
Alexandrov, N., Dennis Jr., J.E., Lewis, R.M., Torczon,
V.1998. A trust region framework for managing the use of approximate models in optimization. Structural Optimization 15, 16-23.

Andrad'ottir, S., 1998. Simulation Optimization. In: Banks,
J. (ED.), Handbook of Simulation, Chapter 9. John Wiley & Sons, New York, pp. 307-333.

Andrad'ottir, S., Kim, S.-H., 2010. Fully sequential procedures for comparing constrained systems via simulation. Naval Research Logistics 57, 403--421.

Atlason, J., Epelman, M.A., Henderson, S.G., 2004. Call center staffing with simulation and cutting plane methods. Annals of Operations Research 127, 333--358.


Atlason, J., Epelman, M.A., Henderson, S.G., 2008. Optimizing call center staffing using simulation and
analytic center cutting-plane methods. Management Science 54 (2),295--309.

Axsater, S., 1993. Continuous review policies for multi-level inventory systems with stochastic demand. In: Graves, S.C., RinnooyKan, A.H.G., Zipkin, P.H. (ED.), Logistics of Production and Inventory.North-Holland, New York, pp. 175-197.

Barton, R.R., 1992. Metamodels for simulation input-output
relations. In: Swain, J.J., Goldsman, D., Crain, R.C., Wilson, J.R.(Eds), Proceeding of the 1992 Winter Simulation Conference. IEEE Press, Piscataway, NJ, pp. 289-299.

Barton, R.R., 1998. Simulation metamodels. In: Medeiros, D.J.,Watson, E.F., Carson, J.S., Manivannan, M.S. (Eds.), Proceeding ofthe 1998 Winter Simulation Conference. IEEE Press, Piscataway, NJ,pp. 167-174.

Batur, D., Kim S.-H., 2010. Finding feasible systems in the
presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation 20 (3), 1--26.

Barton, R. R., Meckesheimer, M., 2006. Metamodel-Based simulation optimization. Handbook in OR.

Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 2006. Nonlinear Programming: Theory and Algorithms, 3rd Edition. John Wiley & Sons, New York, pp. 97-161.

Bechhofer, R.E., 1954. A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with Known Variances. Annals of Mathematical Statistics 25 , 16--39.

Boender, C.G.E., Rinooy Kan, A.H.G., 1987. Bayesian stopping
rules for multistart global optimization methods. Mathematical Programming 37, 59-80.

Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B.,
Torczon, V., Trosset, M.W., 1999. A rigorous framework for
optimization of expensive functions by surrogates. Structural Optimization 17, 1-13.

Box, G.E.P., Wilson, K.B., 1951. On the experimental
attainment of optimum conditions. Journal of the Royal Statistical Society B 13, 1-45.

Breiman, L., 1991. The II method for estimating
multivariate functions from noisy data (with discussion).
Technometrics 33,125-160.

Charnes, A., Cooper, W.W., 1977. Goal programming and multiple objective optimization - part I.

Caggiano, K.E., Jackson, P.L., Muckstadt, J.A., Rappold, J.A., 2007. Optimizing service parts inventory in a multi-echelon, multi-item supply chain with time-based customer service level agreements. Operations Research 55(2), 303--318.

Caggiano, K.E., Jackson, P.L., Muckstadt, J.A., Rappold, J.A., 2009. Efficient computation of time-based customer service levels in a multi-item, multi-echelon supply chain: A practical approach for inventory optimization. European Journal of Operational Research 199, 744-749.

Caglar, D., 2001. A multi-echelon spare parts inventory system with emergency lateral shipments subject to a response time constraint. PhD dissertation, Northwestern University, Evanston, IL.

Caglar, D., Li, C.-L., Simchi-Levi, D., 2004. Two-echelon spare parts inventory system subject to a service constraint. IIE Transactions 36, 655--666.

Candasa, M.F., Kutanoglua E., 2007. Benefits of considering inventory in service parts logistics network design problems with time-based service constraints. IIE Transactions 39,159--176.

Cattani, K.D., Jacobs, F. R., Schoenfelder, J., 2011. Common inventory modeling assumptions that fallshort:Arborescent networks,Poisson demand, and single-echelon approximations. Journal of Operations Management, 1--12.

Cohen, M.A., Cull, C., Lee, H.L., Willen, D., 2000. Saturn's
supply chain innovation: high value in after sales service. MIT Sloan Management Review 41 (4), 93--101.

Cohen, M.A., Kleindorfer, P.R., Lee, H.L., 1988. Service constrained(s,S) inventory systems with priority demand classes and lost sales. Management Science 34 (4), 482--499.

Cohen, M.A., Zheng, Y.-S., Wang, Y., 1999. Identifying opportunities for improving Teradyne's service parts logistics system. Interfaces 29 (4), 1--18.

Floudas, C.A., Pardalos, P.M. (Eds.), 1996. State of the Art
in Global Optimization. Kluwer, Dordrecht, The Netherlands.

Friedman, J.H., 1991. Multivariate adaptive regression
splines. The Annals of Statistics 19, 1-141.

Graves, S.C., 1985. A multi-echelon inventory model for a repairable item with one-for-one replenishment. Management Science 31 (10), 1247--1256.

Grossman, I.E. (Ed.),1996. Global Optimization in Engineering Design. Kluwer, Dordrecht, The Netherlands.

Hong, L. J., Nelson, B. L., 2009. A Brief Introduction to Optimization via Simulation. Winter Simulation Conference Proceedings,75-85.

Hopp, W.J., Spearman, M.L., 2000. Factory Physics. McGraw-Hill, New York City, NY.

Hopp, W.J., Zhang, R.Q., Spearman, M.L., 1999. An easily
implementable hierarchical heuristic for a two-echelon spare parts distribution system. IIE Transactions 31, 977--988.

Kim, S.-H., Nelson, B.L., 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM Transactions on Modeling and Computer Simulation 11(3), 251--273.

Kleijnen, J.P.C., 1975a. A comment on Blanning's metamodel for sensitivity analysis: The regression metamodel in simulation. Interfaces 5, 21-23.

Kleijnen, J.P.C., 1975b. Statistical Techniques in simulation, part II. Dekker, New York.

Kleijnen, J.P.C., 1987. Statistical Tools for Simulation
Practitioners. Dekker, New York.

Kleijnen, J.P.C. (2008), Design and Analysis of Simulation Experiments, Springer.

Kutanoglu, E., Mahajan, M., 2009. An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels.European Journal of Operational Research 194, 728--742.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and
Analysis,3rd ed. McGraw-Hill, New York.

Little, J.D.C., 1961. A proof of the queueing formula: L=lambda W. Operations Research 9 (3),383--387.

Mak, H.-Y., Shen, Z.-J.M., 2009. A two-echelon inventory-location problem with service considerations.
Naval Research Logistics 56, 730--744.

Meckesheimer, M., Booker, A.J., Barton, R.R., Simpson,
T.W.,2002. Computationally inexpensive metamodel assessment
strategies. AIAA Journal 40,2053-2060.

Mitchell, T.J., Morris, M.D., 1992. The spatial correlation
function approach to response surface estimation. In: Swain, J.J.,Goldsman, D., Crain, R.C., Wilson, J.R. (Eds.), Proceedings of the 1992 Winter Simulation Conference. IEEE Press, Piscataway, NJ,pp.565-571.

Muckstadt, J.A., 1973. A model for a multi-item, multi-echelon, multi-indenture inventory system.Management Science 20 (4), 472--481.

Muckstadt, J.A., 2005. Analysis and Algorithms for Service Parts Supply Chains. Springer, New York, NY.

Muckstadt, J.A., Thomas, L.J., 1980. Are multi-echelon
inventory methods worth implementing in systems with low-demand-rate items, Management Science 26 (5), 483--494.

Palm, C., 1938. Analysis of the Erlang traffic formula for busy signal arrangements. Ericsson Technics 5, 39--58.

Pasupathy, R., 2010. On choosing parameters in
retrospective-approximation algorithms for stochastic root finding and simulation optimization. Operations Research 58 (4), 889--901.

Rustenburg, W.D., Van Houtum, G.J.,Zijm, W.H.M., 2001. Spare parts management at complex technology-based organizations: an agenda for research.International Journal of Production Economics 71, 177--193.

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.,1989.
Design and analysis of computer experiments. Statistical Science 4,409-435.

Santos, I.R., Saotos, P.R., 2007,Simulation metamodels for modeling output distribution parameters.Winter Simulation Conference Proceedings.

Simpson, T.W., Mauery, T.M., Korte, J.J., Mistree, F., 1998.
Comparison of response surface and kriging models for multidisciplinary design optimization. In: 7th Symposium on
Multidisciplinary Analysis and Optimization. AIAA-98-4755. AIAA, St.Louis, MO, pp. 381-391.

Sherbrooke, C.C., 1968. METRIC: a multi-echelon technique for recoverable item control. Operations Research 16 (1), 122--141.

Sherbrooke, C.C., 1986. VARI-METRIC: improved approximations for multi-indenture, multi-echelon availability models. Operations Research 34 (2), 311--319.

Sherbrooke, C.C., 1992. Optimal Inventory Modeling of Systems. Wiley,New York, NY.

Thurston, D.L., Carnahan, J.V., Liu, T., 1994. Optomization of design utility. ASMe Journal of Mechanical Design 116, 801-807.

Wong, H., Kranenburg, B., van Houtum G.-J., Cattrysse, D., 2007. Efficient heuristics for two-echelon spare parts
inventory systems with an aggregate mean waiting time constraint per local warehouse. OR Spectrum 29, 699--722.

Yesilyurt, S., Patera, A.T., 1995. Syrrogates for numerical
simulations; optimization of eddy-promoter heat exchangers. Computer Methods in Applied Mechanics and Engineering 121, 231-257.

Zionts, S., 1992. The state of multiple criteria decision
making: Past, present, and future. In: Goicoechea, A., Duckstein,L., Zionts, S.(Eds.), Multiple Criteria Decision Making.Springer-Verlag. New York, pp. 33-43.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top