跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:標雨倢
研究生(外文):Yu-ChiehPiao
論文名稱:土壤中微生物群落對有機農法與慣行農法反應的相關分析
論文名稱(外文):Correlation analysis on the responses of soil microbial community to organic and conventional farming
指導教授:張松彬張松彬引用關係
指導教授(外文):Song-Bin Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物多樣性研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:31
中文關鍵詞:土壤微生物群落組成基質誘導呼吸作用微生物功能多樣性有機農法慣行農法肥料物理化學性質生理圖譜MicroResp
外文關鍵詞:Soil microbial communitySubstrate induced respirationMicroRespMicrobial functional diversityOrganic farmingConventional farmingFertilizerPhysicochemical propertiesPhysiological profile
相關次數:
  • 被引用被引用:1
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究樣區選定兩個位在台灣南投縣名間鄉的茶園,探討在有機農法和慣行農法這兩種不同的操作管理下,對土壤的物理化學性質、微生物群落表現的生理參數和群落結構組成有什麼影響。實驗自2011年一月開始,進行為期一年的逐月採樣,包含慣行-樹下(CAI)、慣行-走道(CAII)、有機-樹下(OAI)和有機-走道(OAII)四個採樣點。以Two-way ANOVA進行分析,了解農法和採樣位置是否對於物化性質、微生物生理參數具有顯著的影響,並針對物化因子和生理參數進行皮爾森相關性分析 (Person correlation analysis),瞭解個別因子間是否具有相關性。另一方面,利用受質誘導呼吸法(Substrate induced respiration, SIR)測定微生物的群落結構組成和功能多樣性,了解不同處理中土壤微生物群落潛在代謝能力的差異。研究結果發現,除了採樣位置對於功能多樣性、農法與採樣位置兩者的交互作用對於微生物生物量沒有顯著影響外,無論是農法、採樣位置或者兩者的交互作用的確對物化性質和生理參數具有顯著的影響;此外,研究結果更顯示,與慣行農法相比,有機農法的管理方式能降低微生物的代謝熵(qCO2)和土壤基礎呼吸,並有效提升微生物群落的功能多樣性和代謝分解能力,特別是對於胺基酸和醣類這兩類的碳源。
Differences in soil physicochemical properties, microbial physiological variables and community structure were investigated in organic and conventional agroecosystems located in Nantou County, central Taiwan. Two series of soil samples from below the tea shrub canopy (TI) and between teas shrubs (TII) were collected monthly during 2011 from each study site. Physicochemical and physiological parameters were analyzed using a two-way ANOVA to determine the impact of farming type and sampling position. Assessment of the relationships between those parameters was performed using the Pearson correlation. The microbial community structure and functional diversity were established based on substrate induced respiration (SIR), which indicates the metabolic potential of the microbial community. Farming type, sampling position and their interaction had a significant impact on physicochemical and physiological variables, whereas functional diversity was not affected by sample position and microbial biomass by their interaction. The results of physiological parameters indicate that organic farming could reduce the metabolic quotient (qCO2) and basal respiration and increase the functional diversity and catabolic ability of the microbial community, especially with amino acids and carbohydrates.
CHINESE ABSTRACT ……………………………………………………………………………………………I
ENGLISH ABSTRACT ……………………………………………………………………………………………II
ACKNOWLEGEMENT …………………………………………………………………………………………………III
CONTENT………………………………………………………………………………………………………………………IV
LIST OF TABLES …………………………………………………………………………………………………V
LIST OF FIGURES ………………………………………………………………………………………………VI
INTRODUCTION ………………………………………………………………………………………………………1
MATERIALS and METHODS ………………………………………………………………………………3
Study sites …………………………………………………………………………………………………………3
Management ……………………………………………………………………………………………………………3
Soil-sampling and physicochemical properties …………………4
Physiological variables and microbial community …………5
Data analyses ……………………………………………………………………………………………………6
RESULTS ……………………………………………………………………………………………………………………8
Soil physicochemical properties ……………………………………………………8
Microbial community ……………………………………………………………………………………9
Functional structure of microbial community ……………………10
DISCUSSION ……………………………………………………………………………………………………………12
CONCLUSIONS …………………………………………………………………………………………………………16
REFERENCES ……………………………………………………………………………………………………………17
Anderson, J. P. E. and K. H. Domsch. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry 10:215-221.
Anderson, T.-H. and K. H. Domsch. 1993. The matabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry 25:393-395.
Berg, N. and Y. Steinberger. 2008. Role of perennial plants in determining the activity of the microbial community in the Negev Desert ecosystem. Soil Biology & Biochemistry 40:2686-2695.
Birkhofer, K., T. M. Bezemer, J. Bloem, M. Bonkowski, S. Christensen, D. Dubois, F. Ekelund, A. Fließbach, L. Gunst, K. Hedlund, P. Mäder, J. Mikola, C. Robin, H. Setälä, F. Tatin-Froux, W. H. Van der Putten, and S. Scheu. 2008. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology & Biochemistry 40:2297-2308.
Bridge, P. and B. Spooner. 2001. Soil fungi: diversity and detection. Plant and Soil 232:147-154.
Campbell, C. D., S. J. Chapman, C. M. Cameron, M. S. Davidson, and J. M. Potts. 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology 69:3593-3599.
Cavigelli, M. A. and G. P. Robertson. 2000. The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81:1402-1414.
Chapman, S. J., C. D. Campbell, and R. R. E. Artz. 2007. Assessing CLPPs using MicroResp™. A comparison with Biolog and multi-SIR. J Soils Sediments 7:406-410.
Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, and J. Zhang. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry 39:2971-2976.
CWB. 2011. Central Weather Bureau.
Dancer, W. S., L. A. Peterson, and G. Chesters. 1973. Ammonification and nitrification of N as influenced by soil pH and previous N treatments. Soil Science Society of America Journal 37:67-69.
Dodd, J. C., C. L. Boddington, A. Rodriguez, C. Gonzalez-Chavez, and I. Mansur. 2000. Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil 226:131-151.
Dong, D., Y.-F. Chen, Y. Steinberge, and Z.-P. Cao. 2007. Effect of different soil management practices on soil free-living nematode community structure, Eastern China. Canadian Journal of soil science 88:115-127.
Drinkwater, L. E., P. Wagoner, and M. Sarrantonio. 1998. Legume-based cropping systemshave reduced carbon and nitrogen losses. Nature 396:262-265.
Fließbach, A., H.-R. Oberholzer, L. Gunst, and P. Mäder. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment 118:273-284.
Frostegård, A. and E. Bååth. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22:59-65.
Garland, J. L. and A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology 57:2351-2359.
Grayston, S. J., C. D. Campbell, R. D. Bardgett, J. L. Mawdsley, C. D. Clegg, K. Ritz, B. S. Griffiths, J. S. Rodwell, S. J. Edwards, W. J. Davies, D. J. Elston, and P. Millard. 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology 25:63-84.
Griffiths, B. S., K. Ritz, R. D. Bardgett, R. Cook, S. Christensen, F. Ekelund, S. J. Sørenson, E. Bååth, J. Bloem, P. C. De Ruiter, J. Dolfing, and B. Nicolardot. 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity
reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279-294.
Haichar, F. Z., C. Marol, O. Berge, J. I. Rangel-Castro, J. I. Prosser, J. Balesdent, T. Heulin, and W. Achouak. 2008. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal 2:1221-1230.
Hu, S. J., A. H. C. van Bruggen, and N. J. Grüwald. 1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology 13:21-30.
Jenkinson, D. S., R. H. Fox, and J. H. Rayner. 1985. Interactions between fertilizer nitrogen and soil nitrogen—the so-called 'priming effect'. Journal of Soil Science 36:425-444.
Kennedy, A. C. and K. L. Smith. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil 170:75-86.
Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. N. Klironomos, H. Lee, and J. T. Trevors. 2004. Methods of studying soil microbial diversity. Journal of Microbiological Methods 58:168-188.
Lagomarsino, A., B. A. Knapp, M. C. Moscatelli, P. D. Angelis, S. Grego, and H. Insam. 2007. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments 7:399-405.
Leckie, S. E. 2005. Methods of microbial community profiling and their application to forest soils. Forest Ecology and Management 220:88-106.
Mäder, P., A. Fließbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296:1694-1697.
Marschner, P., E. Kandeler, and B. Marschner. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology & Biochemistry 35:453-461.
Marshall, C. B., J. R. McLaren, and R. Turkington. 2011. Soil microbial communities resistant to changes in plant functional group composition. Soil Biology & Biochemistry 43:78-85.
McLaren, J. R. and R. Turkington. 2010. Ecosystem properties determined by plant functional group identity. Journal of Ecology 98:459-469.
Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59:695-700.
O'Donnell, A. G., M. Seasman, A. Macrae, I. Waite, and J. T. Davies. 2001. Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil 232:135-145.
Oren, A. and Y. Steinberger. 2008a. Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biology & Biochemistry 40:2578-2587.
Oren, A. and Y. Steinberger. 2008b. Coping with artifacts induced by CaCO3-CO2-H2O equilibria in substrate utilization. Soil Biology & Biochemistry 40:2569-2577.
Paul, E. A. and F. E. Clark. 1989a. Occurrence and distribution of soil organisms. Page 82 Soil Microbiology and Biochemistry. Academic press, Inc., London.
Paul, E. A. and F. E. Clark. 1989b. Occurrence and distribution of soil organisms. Page 89 Soil Microbiology and Biochemistry Academic press, Inc., London.
Paul, E. A. and F. E. Clark. 1989c. Soil as a habitat for organismsand their reactions. Pages 29-30 Soil Microbiology and Biochemistry Academic press, Inc., London.
Paul, E. A. and F. E. Clark. 1989d. Soil as a habitat for organismsand their reactions. Page 25 Soil Microbiology and Biochemistry Academic press, Inc., London.
Reganold, J. P., J. D. Glover, P. K. Andrews, and H. R. Hinman. 2001. Sustainability of three apple production systems. Nature:926-930.
Sarathchandra, S. U., A. Ghani, G. W. Yeates, G. Burch, and N. R. Cox. 2001. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology & Biochemistry 33:953-964.
Saul-Tcherkas, V. and Y. Steinberger. 2011. Soil Microbial Diversity in the Vicinity of a Negev Desert Shrub—Reaumuria negevensis. Microbial ecology 61:64-81.
Schumacher, B. A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center.
Sheh, C. S. and M. K. Wang. 1991. An atlas of major soils of Taiwan. NCHU Soil Survey and Testing Center, Taichung, Taiwan.
Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner. 1996. Methods of Soil Analysis. Part 3 Chemical Methods. Soil Science Society of America, Inc. American Society of Agronomy, Inc., Madison, Wisconsin, USA.
Ste-Marie, C. and D. Paré. 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology & Biochemistry 31:1579-1589.
Tan, K. H. 2005. Soil sampling, preparation, and analysis. 2 edition. Taylor & Francis Group, Boca Raton, FL, USA.
Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:1300-1302.
Torsvik, V., F. L. Daae, R.-A. Sandaa, and L. Øvreås. 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. Journal of Biotechnology 64:53-62.
van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I. R. Sanders. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72.
Wakelin, S. A., L. M. Macdonald, S. L. Rogers, A. L. Gregg, T. P. Bolger, and J. A. Baldock. 2008. Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biology & Biochemistry 40:803-813.
Wander, M. M., D. S. Hedrick, D. Kaufman, S. J. Traina, B. R. Stinner, S. R. Kehrmeyer, and D. C. White. 1995. The functional significance of the microbial biomass in organic and conventionally managed soils. Plant and Soil 170:87-97.
Wardle, D. A., K. I. Bonner, G. M. Barker, G. W. Yeates, K. S. Nicholson, R. D. Bardgett, R. N. Watson, and A. Ghani. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs 69:535-568.
Winding, A., K. Hund-Rinke, and M. Rutgers. 2005. The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety 62:230-148.
Zak, J. C., M. R. Willig, D. L. Moorhead, and H. G. Wildman. 1994. Functional diversity of microbial communities a quantitative approach. Soil Biology & Biochemistry 26:1101-1108.
Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils 29:111-129.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊