跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏森
研究生(外文):Po-SenChen
論文名稱:探討利用彈性體之變形塌陷定義自組裝單分子層圖案以製備微奈米結構
論文名稱(外文):Patterning of Self-Assembled Monolayer (SAM) by Elastomeric Collapse for Micro/nanofabrication
指導教授:莊怡哲
指導教授(外文):Yi-Je Juang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:微接觸壓印自組裝單分子層PDMS彈性體塌陷
外文關鍵詞:micro contact printing(µcp)self-assembled monolayer(SAM)polydimethyl siloxane (PDMS)elastomeric collapse
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們利用低深寬比的PDMS微流道圖案印章沾附1-十六烷基硫醇(1-hexadecanethiol;HDT)「墨水」,藉由微流道的彈性塌陷來進行微接觸壓印(micro-contact printing,µcp),使硫醇分子由PDMS圖章轉印至金屬基板,形成硫醇自組裝單分子層(self-assembled monolayer,SAM)及其定義圖形,再以此自組裝單分子層作為蝕刻遮罩進行濕式蝕刻以製備金屬微流道結構。我們探討不同的操作條件,如吸附硫醇分子的方式、自組裝基材、流道尺寸、施加壓力與否。由實驗結果得知,以氣相或液相均能有效地使硫醇分子吸附於基板上並定義出圖形。在使用的PDMS微流道尺寸範圍內(流道寬度15~100μm、流道高度0.5~5µm),所得到的結構可以分為五種情況,分別為:無塌陷(no collapse)、好(good)、尚可(fair)或差(poor)、失敗(failed)。另外,施加壓力會影響大尺寸PDMS微流道的壓印區域,造成金屬微流道的線寬變小。依據本研究提出的製程方法,其所製備出的金屬微流道最小線寬約為400nm。此外,我們也以a/h2作為微流道設計參數,探討PDMS微流道設計對於微流道塌陷行為的影響。由實驗結果分析可知,當a/h2=20~110時能夠製備出較好的金屬微流道結構。
In this study, a new strategy was proposed and demonstrated to fabricate metallic structures at sub-micron scale. The polydimethyl siloxane (PDMS) stamp having microchannels with low aspect ratio was utilized to ink 1-hexadecanethiol (HDT) solution. The stamp was placed on the substrate coated with metallic materials and microcontact printing (µCP) was achieved by elastomeric collapse of the PDMS microchannels. The thiol molecules were transferred to the substrate and form the self-assembled monolayer (SAM). The SAM serves a etching mask and the metallic microstructures were obtained through wet etching process. The effect of various processing parameters such as inking method, PDMS channel design, substrate and applied force were investigated. It is found that the thiol molecules can be transferred to the substrate and form the pattern via either vapor or liquid-based inking method. Within the channel dimensions used (i.e. width ranging from 15-100 µm, and height ranging from 0.5-5 µm), the fabricated structures can be classified into five categories, that is, no collapse, good, fair, poor and failed. The width of the metallic microstructures will decrease when applying the force on the PDMS stamp having microchannels with larger dimensions. The smallest channel width obtained in this study is approximately 400 nm. a/h2 can be used as the design parameter and it is found that good merallic microstructures can be obtained when the value is between approximately 20 and 110.
摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1前言 1
1.2研究現況與瓶頸 3
1.3研究動機與目的 4
第二章 文獻回顧 5
2.1微影(Lithography)技術 5
2.1.1光微影法(Photo Lithography) 5
2.1.2電子束微影法(Electron Beam Lithography; EBL) 8
2.1.3聚焦離子束微影法(Focused Ion Beam Lithography; FIBL) 10
2.1.4 X射線微影法(X-ray Lithography;XRL) 13
各式微影技術之比較 15
2.1.5奈米壓印微影法(Nano Imprint Lithography; NIL) 15
2.1.6 邊緣微影法法(edge lithography) 18
2.1.7軟式微影法(soft lithography) 25
2.2自組裝單分子層(Self-assembly monolayers) 33
2.2.1 自組裝單分子原理與性質 34
2.2.2 自組裝單分子層應用於微接觸壓印 37
2.3 PDMS微流道圖案印章的塌陷 39
第三章 實驗方法與材料 45
3.1 PDMS微流道圖案印章的製備 45
3.1.1 微流道的尺寸設計 45
3.1.2 微流道圖案印章的製備 47
3.1.3藥品材料與儀器 58
3.2製備微奈米金屬流道 62
3.2.1 以PDMS結構塌陷製備微奈米金屬流道 62
3.2.2藥品材料與儀器 65
3.3分析與檢測 67
第四章 實驗結果與討論 71
4.1 硫醇轉印至金屬基板之探討 71
4.1.1 液相方式吸附硫醇分子 72
4.1.2 氣相方式吸附硫醇分子 75
4.1.3 小結 78
4.2製備微奈米結構 80
4.2.1 硫醇分子吸附方式對壓印的影響 80
4.2.2 不同設計的微奈米結構 82
4.2.3 不同金屬基材製備微奈米結構 84
4.2.4 對PDMS印章施加壓力的影響 85
4.2.5 小結 88
4.3 PDMS結構彈性塌陷的探討 90
4.3.1 PDMS微流道尺寸設計之影響 90
4.3.2 PDMS微流道塌陷行為之探討 92
4.3.3 小結 96
第五章 結論 97
第六章 未來工作與建議 98
參考文獻 99
附錄 103


[1] Schaller R.R., Moore's Law: Past, present, and future, IEEE Spectr. 34, 52 (1997)
[2] http://en.wikipedia.org/wiki/Moore's_law, Moore's law - Wikipedia, the free encyclopedia,
[3] Feynman R., There's plenty of room at the bottom, American Physical Society EaS California Institute of Technology (1959)
[4] Jackson J.D., Classical electrodynamics(John Wiley & Sons)
[5] Mailly D., Nanofabrication techniques, Eur. Phys. J.-Spec. Top. 172, 333-342. (2009)
[6] Dial O., Cheng C.C., Scherer A., Fabrication of high-density nanostructures by electron beam lithography, J. Vac. Sci. Technol. B 16, 3887-3890. (1998)
[7] Howard R.E., Craighead H.G., Jackel L.D., Mankiewich P.M., Feldman M., Electron-beam lithography from 20 to 120 KeV with a high-quality beam, J. Vac. Sci. Technol. B 1, 1101-1104. (1983)
[8] Gierak J., Septier A., Vieu C., Design and realization of a very high-resolution FIB nanofabrication instrument, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 427, 91-98. (1999)
[9] Gierak J., Vieu C., Schneider M., Launois H., Ben Assayag G., Septier A., Optimization of experimental operating parameters for very high resolution focused ion beam applications, J. Vac. Sci. Technol. B 15, 2373-2378. (1997)
[10] Gamo K., Nanofabrication by FIB, Microelectron. Eng. 32, 159-171. (1996)
[11] Rotkina L., Lin J.F., Bird J.P., Nonlinear current-voltage characteristics of Pt nanowires and nanowire transistors fabricated by electron-beam deposition, Appl. Phys. Lett. 83, 4426-4428. (2003)
[12] Coutinho E., Jarmar T., Svahn F., Neves A.A., Verlinden B., Van Meerbeek B., Enggvist H., Ultrastructural characterization of tooth-biomaterial interfaces prepared with broad and focused ion beams, Dent. Mater. 25, 1325-1337. (2009)
[13] Frank W., Andrew B., Jeroen V. K., Ee J. T., Mark B., Ion beam lithography and nanofabrication: a review, International Journal of Nanoscience 4, 269–286. (2005)
[14] Cerrina F., Application of X rays to nanolithography, Proc. IEEE 85, 644-651. (1997)
[15] Silverman J.P., X-ray lithography: Status, challenges, and outlook for 0.13 mu m, J. Vac. Sci. Technol. B 15, 2117-2124. (1997)
[16] Gates B.D., Xu Q.B., Stewart M., Ryan D., Willson C.G., Whitesides G.M., New approaches to nanofabrication: Molding, printing, and other techniques, Chem. Rev. 105, 1171-1196. (2005)
[17] Zach M.P., Ng K.H., Penner R.M., Molybdenum nanowires by electrodeposition, Science 290, 2120-2123. (2000)
[18] Aizenberg J., Black A.J., Whitesides G.M., Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports, Nature 394, 868-871. (1998)
[19] Black A.J., Paul K.E., Aizenberg J., Whitesides G.M., Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum, J. Am. Chem. Soc. 121, 8356-8365. (1999)
[20] Love J.C., Paul K.E., Whitesides G.M., Fabrication of nanometer-scale features by controlled isotropic wet chemical etching, Adv. Mater. 13, 604-+. (2001)
[21] Rogers J.A., Paul K.E., Jackman R.J., Whitesides G.M., Generating similar to 90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask, J. Vac. Sci. Technol. B 16, 59-68. (1998)
[22] Odom T.W., Love J.C., Wolfe D.B., Paul K.E., Whitesides G.M., Improved pattern transfer in soft lithography using composite stamps, Langmuir 18, 5314-5320. (2002)
[23] Qin D., Xia Y.N., Rogers J.A., Jackman R.J., Zhao X.M., Whitesides G.M., Microfabrication, microstructures and microsystems, Microsystem Technology in Chemistry and Life Science 194, 1-20. (1998)
[24] Chen Y., Pepin A., Nanofabrication: Conventional and nonconventional methods, Electrophoresis 22, 187-207. (2001)
[25] Xia Y.N., Whitesides G.M., Soft lithography, Annu. Rev. Mater. Sci. 28, 153-184. (1998)
[26] Xia Y.N., Whitesides G.M., Soft lithography, Angew. Chem.-Int. Edit. 37, 551-575. (1998)
[27] Kumar A., Whitesides G.M., Features of gold having micrometer to centimeter dimensions can be formed though a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002-2004. (1993)
[28] Xia Y.N., Kim E., Whitesides G.M., Microcontact printing of alkanethiols on silver and its application in microfabrication, J. Electrochem. Soc. 143, 1070-1079. (1996)
[29] Xia Y.N., Kim E., Mrksich M., Whitesides G.M., Microcontact printing of alkanethiols on copper and its application in microfabrication, Chem. Mat. 8, 601-&. (1996)
[30] Qin D., Xia Y.N., Whitesides G.M., Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5, 491-502. (2010)
[31] Larsen N.B., Biebuyck H., Delamarche E., Michel B., Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119, 3017-3026. (1997)
[32] Xia Y.N., McClelland J.J., Gupta R., Qin D., Zhao X.M., Sohn L.L.,Celotta R.J.,Whitesides G.M., Replica molding using polymeric materials: A practical step toward nanomanufacturing, Adv. Mater. 9, 147-149. (1997)
[33] Kim E., Xia Y.N., Whitesides G.M., Micromolding in capillaries: Applications in materials science, J. Am. Chem. Soc. 118, 5722-5731. (1996)
[34] Kim E., Xia Y.N., Zhao X.M., Whitesides G.M., Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers, Adv. Mater. 9, 651-654. (1997)
[35] Ozin G.A., Hou K., Lotsch B.V., Cademartiri L., Puzzo D.P., Scotognella F., et al., Nanofabrication by self-assembly, Mater. Today 12, 12-23. (2009)
[36] Blodgettk., Films Built by Depositing Successive Monomolecular Layers on a Solid Surface, J. Am. Chem. Soc 57, 1007-1022. (1935)
[37] Bigelow W.C., Pickett D.L., Zisman W.A., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids, Journal of Colloid Science 1, 513-538. (1946)
[38] Nuzzo R.G., Allara D.L., Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc. 105, 4481-4483. (1983)
[39] Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105, 1103-1169. (2005)
[40] Nuzzo R.G., Zegarski B.R., Dubois L.H., Fundamental studies of the chemisorption of organosulfur compounds on Au(111) - Implications for molecular self assembly on gold surfaces, J. Am. Chem. Soc. 109, 733-740. (1987)
[41] Xia Y.N., Zhao X.M., Kim E., Whitesides G.M., A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold, Chem. Mat. 7, 2332-2337. (1995)
[42] Delamarche E., Schmid H., Bietsch A., Larsen N.B., Rothuizen H., Michel B., et al., Transport mechanisms of alkanethiols during microcontact printing on gold, J. Phys. Chem. B 102, 3324-3334. (1998)
[43] Xia Y.N., Whitesides G.M., Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontact printing, J. Am. Chem. Soc. 117, 3274-3275. (1995)
[44] Cooper M.A., Singleton V.T., A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions, J. Mol. Recognit. 20, 154-184. (2007)
[45] Sharp K.G., Blackman G.S., Glassmaker N.J., Jagota A., Hui C.Y., Effect of stamp deformation on the quality of microcontact printing: Theory and experiment, Langmuir 20, 6430-6438. (2004)
[46] Huang Y.G.Y., Zhou W.X., Hsia K.J., Menard E., Park J.U., Rogers J.A.,Alleyne A.G., Stamp collapse in soft lithography, Langmuir 21, 8058-8068. (2005)
[47] Park S.M., Huh Y.S., Craighead H.G., Erickson D., A method for nanofluidic device prototyping using elastomeric collapse, Proc. Natl. Acad. Sci. U. S. A. 106, 15549-15554. (2009)
[48] Lercel M.J., Rooks M., Tiberio R.C., Craighead H.G., Sheen C.W., Parikh A.N.,Allara D.L., Pattern transfer of electronbeam modified self assembled monolayers for high resolution lithography, J. Vac. Sci. Technol. B 13, 1139-1143. (1995)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top