跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏亦伶
研究生(外文):Yi-LingYan
論文名稱:探討流體之垂直分層應用於微流體燃料電池及電極結構對電池效能的影響
論文名稱(外文):Investigation of vertical streaming for microfluidic fuel cell (MFC) application and effect of electrode surface on MFC performance
指導教授:莊怡哲
指導教授(外文):Yi-Jhe Jhuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:微流體燃料電池垂直分層電極結構層流
外文關鍵詞:microfluidic fuel cell (MFC)vertical streamingelectrode surfacelaminar flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
近年來,市場對可攜式電子產品的需求逐日俱增,而可攜式電子產品需要配備體積小、重量輕和持續穩定供應的電池,因此具有小尺寸、高功率密度和無須質子交換膜特性的微流體燃料電池,有相當大的潛能成為可攜式電子產品新的電源供應裝置,使得微流體燃料電池的研究備受關注。在微流體燃料電池中,氧化劑和燃料間的擴散區域相當於質子交換膜,而電極則可設置於流道的側壁、流道底部(頂部)的兩側或上、下平板。為了探討電極表面結構對於電池效能的影響,我們將電極設置於上、下平板以利於製作三維電極結構,且利用商業套裝軟體CFD-ACE+模擬燃料和氧化劑兩流體在不同流速下於微流道中的分層與擴散情形,並以雷射掃描共軛焦顯微鏡觀察螢光分子於流道中的分布,對照CFD-ACE+的模擬結果。實驗結果發現,擴散區的範圍會隨著上、下層流體流速增加而變小,且隨著流道位置越接近出口,擴散區越大,而擴散區的中心位置則受上、下層流體流速比控制,此與軟體模擬出來的濃度分布趨勢相符。當燃料(甲酸溶液)與氧化劑(過氧化氫溶液)流體流率皆為8 ml/hr時,在本微流體燃料電池裝置中能得到的最大功率密度為0.75 mW/cm2。若利用圓柱陣列電極作為陰極,可提升最大功率密度至0.92 mW/cm2。
In recent years, research and development of microfluidic fuel cell (MFC) have been greatly pursued by many researchers owing to its attractive characteristics such as small size, high power density and membraneless feature, which is suitable to become a new electricity-supplied device for portable electric product. In MFC, the diffusion zone between the oxidant and fuel streams is regarded as the ion-exchange membrane, and the electrodes can be located at either the channel side walls, or two sides at the bottom (or top) plate or the top and bottom plates. In order to investigate the effect of the electrode surface on the efficiency of laminar flow-based MFC, we divide the oxidant and fuel to form the top and bottom streams, i.e. vertical streaming, which allows us to easily construct the 3D electrodes. The deionized water and fluorescein solution were used for flow visualization and distribution of the fluorescein was measured by confocal laser scanning microscopy. The flow behavior of top and bottom streams under different inlet flow rates was also simulated by commercial software package CFD-ACE+. The results showed that the mixing zone between the top and bottom streams is closely related to the flow rates and the length of channel. The higher the flow rates, the smaller the mixing zone. In addition, the position of mixing zone in the z-direction can be controlled by the ratio of the flow rates of the top and bottom streams. The fluorescence intensity profile measured by the confocal microscopy and the simulated concentration profile are in relatively good agreement. For the test of MFC, the maximum output power density of 0.75 mW/cm2 was achieved when the flow rate of both fuel (formic acid) and oxidant (acidic hydrogen peroxide) was 8 ml/hr. The power density further increased up to 0.92 mW/cm2 when the micropillar electrode was used as cathode.
中文摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究現況與瓶頸 5
1.3研究動機與目的 6
第二章 文獻回顧 7
2.1微流體燃料電池概述 7
2.2微流體燃料電池基本原理 11
2.3燃料與氧化劑 12
2.4電極材料及表面結構 15
2.5微流體燃料電池裝置設計 18
2.6流體模擬與分析 22
2.7研究動機與目的 23
第三章 材料與方法 24
3.1實驗藥品與材料 24
3.2實驗儀器 28
3.3實驗流程 36
3.3.1微流道的製備 36
3.3.2CFDRC的模擬分析 40
3.3.3微流體燃料電池的製備 43
第四章 結果與討論 48
4.1流體上、下分層情形 48
4.1.1上、下層流體流速相同 48
4.1.2上、下層流體流速不同 55
4.2微流體燃料電池電化學分析 59
4.2.1上、下層流體流速相同的影響 59
4.2.2上、下層流體流速不同的影響 67
4.2.3圓柱陣列電極的影響 69
第五章 結論 77
第六章 未來工作 78
參考文獻 79

[1]左俊德, 何玉麗, 林祐民, and 張詩韻, 台灣燃料電池產業發展策略之研究, 財團法人台灣經濟研究院, pp. 2-6, 2000.
[2]E. Kjeang, N. Djilali, and D. Sinton, Microfluidic fuel cells: A review, Journal of Power Sources, vol. 186, pp. 353-369, Jan 2009.
[3]C. K. Dyer, Fuel cells for portable applications, Journal of Power Sources, vol. 106, pp. 31-34, Apr 2002.
[4]R. Ferrigno, A. D. Stroock, T. D. Clark, M. Mayer, and G. M. Whitesides, Membraneless vanadium redox fuel cell using laminar flow, Journal of the American Chemical Society, vol. 124, pp. 12930-12931, Nov 2002.
[5]G. M. Whitesides, The origins and the future of microfluidics, Nature, vol. 442, pp. 368-373, Jul 2006.
[6]P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Microfabrication inside capillaries using multiphase laminar flow patterning, Science, vol. 285, pp. 83-85, Jul 1999.
[7]R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, and H. A. Stone, Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Applied Physics Letters, vol. 76, pp. 2376-2378, Apr 2000.
[8]J. L. Cohen, D. J. Volpe, D. A. Westly, A. Pechenik, and H. D. Abruna, A dual electrolyte H-2/O-2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V, Langmuir, vol. 21, pp. 3544-3550, Apr 12 2005.
[9]E. Choban, J. Spendelow, L. Gancs, A. Wieckowski, and P. Kenis, Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media, Electrochimica Acta, vol. 50, pp. 5390-5398, 2005.
[10]S. Hasegawa, K. Shimotani, K. Kishi, and H. Watanabe, Electricity Generation from Decomposition of Hydrogen Peroxide, Electrochemical and Solid-State Letters, vol. 8, p. A119, 2005.
[11]E. Choban, Microfluidic fuel cell based on laminar flow, Journal of Power Sources, vol. 128, pp. 54-60, 2004.
[12]A. Li, S. H. Chan, and N.-T. Nguyen, A laser-micromachined polymeric membraneless fuel cell, Journal of Micromechanics and Microengineering, vol. 17, pp. 1107-1113, 2007.
[13]E. Kjeang, A. G. Brolo, D. A. Harrington, N. Djilali, and D. Sinton, Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells, Journal of The Electrochemical Society, vol. 154, p. B1220, 2007.
[14]R. S. Jayashree, L. Gancs, E. R. Choban, A. Primak, D. Natarajan, L. J. Markoski, and P. J. A. Kenis, Air-breathing laminar flow-based microfluidic fuel cell, Journal of the American Chemical Society, vol. 127, pp. 16758-16759, Dec 2005.
[15]E. Kjeang, R. Michel, D. A. Harrington, D. Sinton, and N. Djilali, An alkaline microfluidic fuel cell based on formate and hypochlorite bleach, Electrochimica Acta, vol. 54, pp. 698-705, 2008.
[16]K. S. Salloum, J. R. Hayes, C. A. Friesen, and J. D. Posner, Sequential flow membraneless microfluidic fuel cell with porous electrodes, Journal of Power Sources, vol. 180, pp. 243-252, May 15 2008.
[17]M. H. Sun, G. V. Casquillas, S. S. Guo, J. Shi, H. Ji, Q. Ouyang, and Y. Chen, Characterization of microfluidic fuel cell based on multiple laminar flow, Microelectronic Engineering, vol. 84, pp. 1182-1185, May-Aug 2007.
[18]J. L. Cohen, D. A. Westly, A. Pechenik, and H. D. Abruna, Fabrication and preliminary testing of a planar membraneless microchannel fuel cell, Journal of Power Sources, vol. 139, pp. 96-105, Jan 2005.
[19]R. S. Jayashree, D. Egas, J. S. Spendelow, D. Natarajan, L. J. Markoski, and P. J. A. Kenis, Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte, Electrochemical and Solid-State Letters, vol. 9, pp. A252-A256, 2006.
[20]E. R. Choban, P. Waszczuk, and P. J. A. Kenis, Characterization of Limiting Factors in Laminar Flow-Based Membraneless Microfuel Cells, Electrochemical and Solid-State Letters, vol. 8, p. A348, 2005.
[21]W. Sung and J.-W. Choi, A membraneless microscale fuel cell using non-noble catalysts in alkaline solution, Journal of Power Sources, vol. 172, pp. 198-208, 2007.
[22]E. Kjeang, R. Michel, D. A. Harrington, N. Djilali, and D. Sinton, A microfluidic fuel cell with flow-through porous electrodes, Journal of the American Chemical Society, vol. 130, pp. 4000-4006, Mar 2008.
[23]E. Kjeang, B. T. Proctor, A. G. Brolo, D. A. Harrington, N. Djilali, and D. Sinton, High-performance microfluidic vanadium redox fuel cell, Electrochimica Acta, vol. 52, pp. 4942-4946, 2007.
[24]E. Kjeang, J. McKechnie, D. Sinton, and N. Djilali, Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes, Journal of Power Sources, vol. 168, pp. 379-390, Jun 1 2007.
[25]M.-H. Chang, F. Chen, and N.-S. Fang, Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel, Journal of Power Sources, vol. 159, pp. 810-816, 2006.
[26]S. K. Yoon, G. W. Fichtl, and P. J. A. Kenis, Active control of the depletion boundary layers in microfluidic electrochemical reactors, Lab on a Chip, vol. 6, pp. 1516-1524, Dec 2006.
[27]F. R. Brushett, R. S. Jayashree, W. P. Zhou, and P. J. A. Kenis, Investigation of fuel and media flexible laminar flow-based fuel cells, Electrochimica Acta, vol. 54, pp. 7099-7105, Nov 2009.
[28]R. S. Jayashree, S. K. Yoon, F. R. Brushett, P. O. Lopez-Montesinos, D. Natarajan, L. J. Markoski, and P. J. A. Kenis, On the performance of membraneless laminar flow-based fuel cells, Journal of Power Sources, vol. 195, pp. 3569-3578, 2010.
[29]A. Bazylak, D. Sinton, and N. Djilali, Improved fuel utilization in microfluidic fuel cells: A computational study, Journal of Power Sources, vol. 143, pp. 57-66, Apr 2005.
[30]F. Chen, M. Chang, and C. Hsu, Analysis of membraneless microfuel cell using decomposition of hydrogen peroxide in a Y-shaped microchannel, Electrochimica Acta, vol. 52, pp. 7270-7277, 2007.
[31]F. Chen, M. Chang, and M. Lin, Analysis of membraneless formic acid microfuel cell using a planar microchannel, Electrochimica Acta, vol. 52, pp. 2506-2514, 2007.
[32]W. Chen and F. Chen, Theoretical approaches to studying the single and simultaneous reactions in laminar flow-based membraneless fuel cells, Journal of Power Sources, vol. 162, pp. 1137-1146, 2006.
[33]A. D. James Larminie, Fuel Cell Systems Explained, pp. 1-66, 2003.
[34]J. R. Welty, C. E. Wicks, R. E. Wilson, and G. L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, 2007.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top