跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明達
研究生(外文):Ming-TaLee
論文名稱:探討微針陣列之製作:運用感應耦合電漿蝕刻及旋轉塗佈法
論文名稱(外文):Fabrication of Microneedle Array: Inductively Coupled Plasma Etching and Spin Coating
指導教授:莊怡哲
指導教授(外文):Yi-Je Juang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:微針二甲基矽氧烷旋轉塗佈誘導感應偶合電漿離子蝕刻流變性質
外文關鍵詞:microneedlespolydimethyl siloxane (PDMS)spin coatinginductively coupled plasma- reactive ion etching (ICP-RIE)rheological model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究以矽晶圓做為基材製作矽基微針陣列,並將微針晶片作為母模,先以二甲基矽氧烷(polydimethylsiloxane, PDMS)鑄造負向模,再利用鑄模法及旋轉塗佈法製作高分子微針貼片應用於經皮藥物輸送。在矽基微針製作方面,運用誘導感應偶合電漿離子蝕刻(inductive coupled plasma-reactive ion etching, ICP-RIE ),製作不同幾何形狀與尺寸之微針陣列。實驗結果顯示,若是直接進行蝕刻,則可得到深寬比約0.5的圓錐形微針陣列。若以二段蝕刻法,亦即先以低溫深蝕刻方式製備出微柱,再進行側向蝕刻,則可得到深寬比約5-10之魚叉形微針或是釘子形微針。而利用鑄模法或旋轉塗佈法,均能得到高分子微針貼片。其中旋轉塗佈法製程較短且能有效控制膜厚的範圍。
此外,在旋轉塗佈過程中,高分子溶液之流變行為主導膜厚成形之關鍵因素,若能依據適當的剪切速率範圍,將流體之流變性質帶入理論推導之經驗式,不僅可得到膜厚與轉速的關係,此預測結果也與實驗值相當接近。

In this study, we have investigated fabrication of silicon microneedles which were then used to generate polydimethyl siloxane (PDMS) negative relief for subsequent usage of making polymeric microneedles via casting and spin coating. The silicon microneedles with different geometric shapes and sizes were fabricated by inductively coupled plasma- reactive ion etching (ICP-RIE) process. It is found that the conical shaped microneedles with aspect ratio around 0.5 were obtained by one step direct etching. When applying the proposed two-step approach, i.e. making micropillars, followed by lateral etching, the spear-like or nail-like microneedles with aspect ratio between 5-10 were obtained. The polymeric microneedles can be produced by both casting and spin coating processes. Spin coating provides a better alternative in terms of shorter processing time and better control of film thickness.
For the spin coating process, it is found that the spin-rate dependent film thickness is highly associated with the rheological property of the polymer solution. By using the proper rheological model, the relationship between the film thickness and spin rate can be estimated, which is in a relatively good agreement with the experimental results.

中文摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與方法 1
第二章 文獻回顧 3
2.1 經皮藥物輸送 3
2.2 微針陣列製備 8
2.2.1 微針陣列種類與設計 8
2.2.2 實心微針陣列製備 10
2.2.3 高分子微針製備 24
2.2.4 空心微針陣列製備 29
2.3 旋轉塗佈研究 33
第三章 實驗材料與方法 39
3.1 矽基材微針陣列製備 39
3.1.1 實驗材料與藥品 39
3.1.2 實驗儀器與設備 40
3.1.3 實驗方法與流程 46
3.2 高分子微針陣列製備 51
3.2.1 實驗材料與藥品 51
3.2.2 實驗儀器與設備 52
3.2.3 實驗方法與流程 54
3.3 旋轉塗佈研究 56
3.3.1 實驗材料與藥品 56
3.3.2 實驗儀器與設備 56
3.3.3 實驗方法與流程 60
第四章 微針陣列之製作與探討 64
4.1 一段式蝕刻製備矽基材微針 64
4.1.1電漿蝕刻製程探討 64
4.1.2 破片晶圓蝕刻 66
4.1.3 完整6吋晶圓蝕刻 73
4.2 二段式蝕刻製備矽基材微針 76
4.2.1 不同深寬比微柱製作 76
4.2.2 不同幾何形狀之微針製作 79
4.3 以鑄模法轉印製備高分子微針 83
4.3.1 低深寬比微針之製作 83
4.3.2 高深寬比高分子微針之製作 84
4.4 以旋轉塗佈法製備高分子微針 86
4.4.1 PVP水溶液於PDMS模具之成膜討論 86
4.4.2 添加介面活性劑對於旋轉塗佈成膜之影響 88
4.4.3 高深寬比高分子微針之製作 93
第五章 高分子旋轉塗佈研究 95
5.1 探討PVP溶液旋轉塗佈之變數影響 97
5.2 旋轉塗佈轉速對於膜厚之影響 100
第六章 結論 105
第七章 未來工作與建議 107
第八章 參考文獻 108
附錄一 大尺寸微針製備 115
附錄二 以垂直微柱製備微針 116
附錄三 鑄模法製備不同高度之高分子微針 118
附錄四 探討旋轉塗佈之膜厚與濃度關係 120
附錄五 探討低分子量之PVP溶液對於膜厚與轉速關係之影響 122

[1] Corrie S.R., Fernando G.J.P., Crichton M.L., Brunck M.E.G., Anderson C.D., Kendall M.A.F., Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding, Lab on a Chip 10, 2655. (2010)
[2] Gao Z.Q., Agarwal A., Trigg A.D., Singh N., Fang C., Tung C.H., Fan Y., Buddharaju K.D., Kong J.M., Silicon nanowire arrays for label-free detection of DNA, Anal. Chem. 79, 3291-3297. (2007)
[3] Yan R., Mestas S.P., Yuan G., Safaisini R., Dandy D.S., Lear K.L., Label-free silicon photonic biosensor system with integrated detector array, Lab on a Chip 9, 2163. (2009)
[4] Thomas R.N., Photosensitive field emission from silicon point arrays, Applied Physics Letters 21, 384. (1972)
[5] Zhu J., Yu Z.F., Burkhard G.F., Hsu C.M., Connor S.T., Xu Y.Q., Wang Q., McGehee M., Fan S.H., Cui Y., Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Lett. 9, 279-282. (2009)
[6] Henry S., McAllister D.V., Allen M.G., Prausnitz M.R., Microfabricated microneedles: A novel approach to transdermal drug delivery, J. Pharm. Sci. 87, 922-925. (1998)
[7] Williams A.C., Barry B.W., Penetration enhancers, Advanced Drug Delivery Reviews 56, 603-618. (2004)
[8] Denet A.-R., Vanbever R., Préat V., Skin electroporation for transdermal and topical delivery, Advanced Drug Delivery Reviews 56, 659-674. (2004)
[9] Pikal M.J., The role of electroosmotic flow in transdermal iontophoresis, Advanced Drug Delivery Reviews 46, 281-305. (2001)
[10] Doukas A.G., Kollias N., Transdermal drug delivery with a pressure wave, Advanced Drug Delivery Reviews 56, 559-579. (2004)
[11] Mitragotri S., Kost J., Low-frequency sonophoresis, Advanced Drug Delivery Reviews 56, 589-601. (2004)
[12] Kaushik S., Hord A.H., Denson D.D., McAllister D.V., Smitra S., Allen M.G., Prausnitz M.R., Lack of pain associated with microfabricated microneedles, Anesth. Analg. 92, 502-504. (2001)
[13] Park J.-H., Allen M.G., Prausnitz M.R., Polymer Microneedles for Controlled-Release Drug Delivery, Pharmaceutical Research 23, 1008-1019. (2006)
[14] Martanto W., Davis S.P., Holiday N.R., Wang J., Gill H.S., Prausnitz M.R., Transdermal delivery of insulin using microneedles in vivo, Pharmaceutical Research 21, 947-952. (2004)
[15] Davis S.P., Martanto W., Allen M.G., Prausnitz M.R., Hollow metal microneedles for insulin delivery to diabetic rats, IEEE Trans. Biomed. Eng. 52, 909-915. (2005)
[16] Lee J.W., Choi S.-O., Felner E.I., Prausnitz M.R., Dissolving Microneedle Patch for Transdermal Delivery of Human Growth Hormone, Small 7, 531-539. (2011)
[17] Sullivan S.P., Koutsonanos D.G., del Pilar Martin M., Lee J.W., Zarnitsyn V., Choi S.-O., Murthy N., Compans R.W., Skountzou I., Prausnitz M.R., Dissolving polymer microneedle patches for influenza vaccination, Nature Medicine 16, 915-920. (2010)
[18] Mikszta J.A., Alarcon J.B., Brittingham J.M., Sutter D.E., Pettis R.J., Harvey N.G., Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery, Nature Medicine 8, 415-419. (2002)
[19] Sullivan S.P., Murthy N., Prausnitz M.R., Minimally Invasive Protein Delivery with Rapidly Dissolving Polymer Microneedles, Advanced Materials 20, 933-938. (2008)
[20] Paik S.-J., Byun S., Lim J.-M., Park Y., Lee A., Chung S., Chang J., Chun K., Cho D.D., In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems, Sensors and Actuators A: Physical 114, 276-284. (2004)
[21] Izumi H., Aoyagi S., Novel fabrication method for long silicon microneedles with three-dimensional sharp tips and complicated shank shapes by isotropic dry etching, IEEJ Transactions on Electrical and Electronic Engineering 2, 328-334. (2007)
[22] Jin C.Y., Han M.H., Lee S.S., Choi Y.H., Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery, Biomedical Microdevices 11, 1195-1203. (2009)
[23] Davis S.P., Landis B.J., Adams Z.H., Allen M.G., Prausnitz M.R., Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force, Journal of Biomechanics 37, 1155-1163. (2004)
[24] Mukerjee E.V., Collins S.D., Isseroff R.R., Smith R.L., Microneedle array for transdermal biological fluid extraction and in situ analysis, Sensors and Actuators A: Physical 114, 267-275. (2004)
[25] Chen Q., Fang J., Ji H.-F., Varahramyan K., Isotropic etch for SiO2 microcantilever release with ICP system, Microelectronic Engineering 85, 500-507. (2008)
[26] Jansen H., Deboer M., Legtenberg R., Elwenspoek M., THE BLACK SILICON METHOD - A UNIVERSAL METHOD FOR DETERMINING THE PARAMETER SETTING OF A FLUORINE-BASED REACTIVE ION ETCHER IN DEEP SILICON TRENCH ETCHING WITH PROFILE CONTROL, Journal of Micromechanics and Microengineering 5, 115-120. (1995)
[27] Trujillo J.T., Hunt C.E., FABRICATION OF SILICON FIELD-EMISSION POINTS FOR VACUUM MICROELECTRONICS BY WET CHEMICAL ETCHING, Semicond. Sci. Technol. 6, 223-225. (1991)
[28] Hariz A., Kim H.G., Haskard M.R., Chung I.J., Field-emitter cathode for acceleration sensors, Journal of Micromechanics and Microengineering 5, 282-288. (1995)
[29] Chung I.J., Murfett D.B., Hariz A., Haskard M.R., Fabrication of high aspect ratio silicon micro-tips for field emission devices, J. Mater. Sci. 32, 4999-5003. (1997)
[30] Burt D.P., Dobson P.S., Donaldson L., Weaver J.M.R., A simple method for high yield fabrication of sharp silicon tips, Microelectronic Engineering 85, 625-630. (2008)
[31] Sasaki H., Shikida M., Sato K., Fabrication of densely arrayed Si needles with large height for transdermal drug delivery system application, IEEJ Transactions on Electrical and Electronic Engineering 2, 340-347. (2007)
[32] Shikida M., Odagaki M., Todoroki N., Ando M., Ishihara Y., Ando T., Sato K., Non-photolithographic pattern transfer for fabricating arrayed three-dimensional microstructures by chemical anisotropic etching, Sensors and Actuators A: Physical 116, 264-271. (2004)
[33] Wilke N., Mulcahy A., Ye S.R., Morrissey A., Process optimization and characterization of silicon microneedles fabricated by wet etch technology, Microelectronics Journal 36, 650-656. (2005)
[34] Wilke N., Morrissey A., Silicon microneedle formation using modified mask designs based on convex corner undercut, Journal of Micromechanics and Microengineering 17, 238-244. (2007)
[35] Yih P.H., Saxena V., Steckl A.J., A review of SiC reactive ion etching in fluorinated plasmas, Phys. Status Solidi B-Basic Res. 202, 605-642. (1997)
[36] Wilke N., Hibert C., O’Brien J., Morrissey A., Silicon microneedle electrode array with temperature monitoring for electroporation, Sensors and Actuators A: Physical 123-124, 319-325. (2005)
[37] Abdolvand R., Ayazi F., An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon, Sensors and Actuators A: Physical 144, 109-116. (2008)
[38] Jansen H., de Boer M., Wensink H., Kloeck B., Elwenspoek M., The black silicon method. VIII. A study of the performance of etching silicon using SF6/O-2-based chemistry with cryogenical wafer cooling and a high density ICP source, Microelectronics Journal 32, 769-777. (2001)
[39] de Boer M.J., Gardeniers J.G.E., Jansen H.V., Smulders E., Gilde M.J., Roelofs G., Sasserath J.N., Elwenspoek M., Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures, J. Microelectromech. Syst. 11, 385-401. (2002)
[40] Rangelow I.W., Biehl S., High aspect ratio silicon tips field emitter array, Microelectronic Engineering 57-8, 613-619. (2001)
[41] Chen B., Wei J., Tay F.E.H., Wong Y.T., Iliescu C., Silicon microneedle array with biodegradable tips for transdermal drug delivery, Microsystem Technologies 14, 1015-1019. (2008)
[42] Choi S.O., Rajaraman S., Yoon Y.K., Wu X., Allen M.G., 3-D PATTERNED MICROSTRUCTURES USING INCLINED UV EXPOSURE AND METAL TRANSFER MICROMOLDING, Proc. Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head, SC) (2006)
[43] Choi S.-O., Kim Y.C., Park J.-H., Hutcheson J., Gill H.S., Yoon Y.-K., Prausnitz M.R., Allen M.G., An electrically active microneedle array for electroporation, Biomedical Microdevices 12, 263-273. (2009)
[44] You X., Pak J.J., Chang J.h., Rapidly dissolving silk protein microneedles for transdermal drug delivery, Nano/Molecular Medicine and Engineering (NANOMED), 2010 IEEE 4th International Conference on
[45] Park J.-H., Allen M.G., Prausnitz M.R., Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery, Journal of Controlled Release 104, 51-66. (2005)
[46] Lee J.W., Park J.-H., Prausnitz M.R., Dissolving microneedles for transdermal drug delivery, Biomaterials 29, 2113-2124. (2008)
[47] Chu L.Y., Choi S.-O., Prausnitz M.R., Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs, J. Pharm. Sci. 99, 4228-4238. (2010)
[48] Zhu M.W., Li H.W., Chen X.L., Tang Y.F., Lu M.H., Chen Y.F., Silica needle template fabrication of metal hollow microneedle arrays, Journal of Micromechanics and Microengineering 19, 115010. (2009)
[49] Stoeber B., Liepmann D., Arrays of hollow out-of-plane microneedles for drug delivery, J. Microelectromech. Syst. 14, 472-479. (2005)
[50] Baron N., Passave J., Guichardaz B., Cabodevila G., Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw, Microsystem Technologies 14, 1475-1480. (2008)
[51] Lawrence C.J., The mechanics of spin coating of polymer films, Physics of Fluids 31, 2786. (1988)
[52] Emslie A.G., Bonner F.T., Peck L.G., Flow of a Viscous Liquid on a Rotating Disk, J. Appl. Phys. 29, 858. (1958)
[53] Acrivos A., Shah M.J., Petersen E.E., On the Flow of a Non-Newtonian Liquid on a Rotating Disk, J. Appl. Phys. 31, 963. (1960)
[54] Washo B.D., Rheology and Modeling of the Spin Coating Process, IBM Journal of Research and Development 21, 190. (1977)
[55] Meyerhofer D., Characteristics of resist films produced by spinning, J. Appl. Phys. 49, 3993. (1978)
[56] Daughton W.J., Givens F.L., AN INVESTIGATION OF THE THICKNESS VARIATION OF SPUN-ON THIN-FILMS COMMONLY ASSOCIATED WITH THE SEMICONDUCTOR INDUSTRY, J. Electrochem. Soc. 129, 173-179. (1982)
[57] Chen B.T., INVESTIGATION OF THE SOLVENT-EVAPORATION EFFECT ON SPIN COATING OF THIN-FILMS, Polymer Engineering and Science 23, 399-403. (1983)
[58] 鍾震桂, 幾何形狀對矽感應耦合電漿蝕刻的影響, 真空科技 16, 19-24. (2004)
[59] Bhardwaj J.K., Ashraf H., Advanced silicon etching using high density plasmas, Micromachining and Microfabrication Process Technology 2639, 224-233. (1995)
[60] Park J.H., Choi S.O., Seo S., Bin Choy Y., Prausnitz M.R., A microneedle roller for transdermal drug delivery, Eur. J. Pharm. Biopharm. 76, 282-289. (2010)
[61] Jenekhe S.A., Schuldt S.B., COATING FLOW OF NON-NEWTONIAN FLUIDS ON A FLAT ROTATING-DISK, Industrial & Engineering Chemistry Fundamentals 23, 432-436. (1984)
[62] Jenekhe S.A., EFFECTS OF SOLVENT MASS-TRANSFER ON FLOW OF POLYMER-SOLUTIONS ON A FLAT ROTATING-DISK, Industrial & Engineering Chemistry Fundamentals 23, 425-432. (1984)
[63] Shimoji S., A NEW ANALYTICAL MODEL FOR SPIN COATING PROCESS WITH SOLVENT EVAPORATION, Jpn. J. Appl. Phys. Part 2 - Lett. 26, L905-L907. (1987)
[64] Bornside D.E., Macosko C.W., Scriven L.E., Spin coating: One-dimensional model, J. Appl. Phys. 66, 5185. (1989)
[65] Shimoji S., Numerical analysis of the spin-coating process, J. Appl. Phys. 66, 2712. (1989)
[66] Charpin J., Lombe M., Myers T., Spin coating of non-Newtonian fluids with a moving front, Physical Review E 76, (2007)
[67] Wang C.T., Yen S.C., THEORETICAL-ANALYSIS OF FILM UNIFORMITY IN SPINNING PROCESSES, Chem. Eng. Sci. 50, 989-999. (1995)
[68] Lawrence C.J., Zhou W., SPIN COATING OF NON-NEWTONIAN FLUIDS, J. Non-Newton. Fluid Mech. 39, 137-187. (1991)
[69] Lai J.H., INVESTIGATION OF SPIN COATING OF ELECTRON RESISTS, Polymer Engineering and Science 19, 1117-1121. (1979)
[70] Spangler L.L., Torkelson J.M., Royal J.S., INFLUENCE OF SOLVENT AND MOLECULAR-WEIGHT ON THICKNESS AND SURFACE-TOPOGRAPHY OF SPIN-COATED POLYMER-FILMS, Polymer Engineering and Science 30, 644-653. (1990)
[71] Skrobis K.J., Denton D.D., Skrobis A.V., EFFECT OF EARLY SOLVENT EVAPORATION ON THE MECHANISM OF THE SPIN-COATING OF POLYMERIC SOLUTIONS, Polymer Engineering and Science 30, 193-196. (1990)
[72] Sukanek P.C., 'Anomalous' speed dependence in polyimide spin coating, J. Electrochem. Soc. 144, 3959-3963. (1997)
[73] Jensen R.J., Cummings J.P., Vora H., COPPER POLYIMIDE MATERIALS SYSTEM FOR HIGH-PERFORMANCE PACKAGING, Ieee Transactions on Components Hybrids and Manufacturing Technology 7, 384-393. (1984)
[74] Sukanek P.C., DEPENDENCE OF FILM THICKNESS ON SPEED IN SPIN COATING, J. Electrochem. Soc. 138, 1712-1719. (1991)
[75] Levinson W.A., Arnold A., Dehodgins O., SPIN-COATING BEHAVIOR OF POLYIMIDE PRECURSOR SOLUTIONS, Polymer Engineering and Science 33, 980-988. (1993)
[76] Cheung K.P., Grover R., Wang Y., Gurkovich C., Wang G., Scheinbeim J., Substrate effect on the thickness of spin-coated ultrathin polymer film, Applied Physics Letters 87, 214103. (2005)
[77] Temple-Boyer P., Mazenq L., Doucet J.B., Conédéra V., Torbiéro B., Launay J., Theoretical studies of the spin coating process for the deposition of polymer-based Maxwellian liquids, Microelectronic Engineering 87, 163-166. (2010)
[78] Chang Y., Wu W.C., Chen W.C., Theoretical analysis on spin coating of polyimide precursor solutions, J. Electrochem. Soc. 148, F77-F81. (2001)
[79] Ducrée J., Haeberle S., Lutz S., Pausch S., Stetten F.v., Zengerle R., The centrifugal microfluidic Bio-Disk platform, Journal of Micromechanics and Microengineering 17, S103-S115. (2007)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top