跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉麗霞
研究生(外文):GraeciaLugito
論文名稱:聚己二酸二丁酯、聚己二酸二乙酯與不定型高分子摻合體之多晶態、晶板及球晶形貌研究
論文名稱(外文):Polymorphism, Lamellae, and Spherulites in Blends of Poly(1,4-butylene adipate), Poly(ethylene adipate), and Amorphous Polymers
指導教授:吳逸謨
指導教授(外文):Eamor M. Woo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:78
中文關鍵詞:高分子摻合多晶態晶板球晶結晶形貌
外文關鍵詞:Polymer blendpolymorphismlamellaespherulitecrystal morphology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對聚己二酸二丁酯(PBA)與聚己二酸二乙酯(PEA)形成結晶性與結晶性高分子混摻系統或PBA與PEA分別與phenoxy形成結晶性與不定型高分子 混摻系統探討。PBA與PEA在非常相近的結晶溫度下都能形成環狀消光環的聚酯類高分子。PBA在形成環狀消光環的溫度範圍(28 – 31 oC)中會存在兩種多晶態(α和β)的結晶結構。而PEA球晶的birefringence在溫度範圍0 – 40 oC間會轉變。PBA與PEA跟phenoxy之間因為存在氫鍵作用力而有助於他們之間的相容性,然而PBA與PEA個別與phenoxy混摻系統或者PBA/PEA混摻系統對於結晶型貌、熱行為、結晶行為和作用力探討都還沒有人探討過。
PBA/phenoxy、PEA/phenoxy和PBA/PEA混摻系統利用偏光顯微鏡(POM)、原子力顯微鏡(AFM)和掃描式電子顯微鏡(SEM)去探討結晶型貌、晶板自組裝行為和結晶行為。微分掃描熱卡計(DSC)則用於探討純的高分子或混摻系統的熱行為和相容性。傅立葉轉換紅外光譜儀(FT-IR)和廣角X光繞射儀(WAXD)用來確認多晶態間的轉換、特定作用立和晶體結構。
PBA或PEA和phenoxy的混摻系統對於結晶型貌的表現有不一樣的影響。針對PBA/phenoxy混摻系統(90/10、80/20和70/30)利用AFM的觀察,很明顯地可以知道phenoxy的加入破壞了原本neat PBA環狀消光環中edge-on和flat-on有序的出現,而形成ringless的球晶型貌。Phenoxy的加入使得PBA/phenoxy混摻系統更容易形成熱力學上較穩定的α-form,然而在PEA/phenoxy混摻系統卻不會影響到環狀消光環的出現。巨大側鏈取代基促使PEA edge-on晶板出現,並阻止晶板顯著地往切線方向做彎曲。PEA/phenoxy混摻系統在結晶溫度15 oC時仍維持負型球晶,但是對於PEA而言已經轉變為正型球晶。Phenoxy更能影響到PEA球晶大小。
單一玻璃轉換溫度可以證明混摻系統的相容性。有趣地,PBA/PEA混摻系統在組成10/90與40/60之間的條件下所有結晶溫度都可看到特殊的inter-wined晶板的成長形成bird-nest-like的表面形貌,且在這組成條件下也伴隨著微弱作用力。針對結晶溫度30 oC條件下,都可以很容易由nest-like表面晶型貌中分辨出純PBA和PEA的環狀消光環。明顯地,表面結晶型貌的轉變伴隨著inter-lamellar cavities,而inter-lamellar cavities的形成是因為晶體無序的排列或PBA、PEA在PBA一次結晶和PEA二次結晶的擴散控制條件下重新排列所造成。而這種無序或inter-lamellar cavities在微弱作用力作用下和特定組成下PBA、PEA成長速率不同下顯著。

Effects of blending poly(1,4-butylene adipate) (PBA) and poly(ethylene adipate) (PEA) as crystalline/crystalline blend system and their blending with phenoxy as crystalline/amorphous blend systems had been investigated. PBA and PEA are aliphatic polyesters with unique ring-banded morphology which appears at a quite similar crystalline temperature (Tc) range. PBA has polymorphism of two kinds of crystal form (α and β) which formed together at the same range of crystallization temperature with the appearance of ring-banded morphology (28 – 31 oC). PEA is known showing a spherulite birefringent transition while crystallized at low to high Tc (0 – 40 oC). Both PBA and PEA are known to be miscible with phenoxy in binary blend system. However, the effects on morphology, thermal, and crystallization behavior of their crystalline/amorphous blends and their interactions in crystalline/crystalline blend system have not been probed, which constituted an objective of this study.
Some compositions of neat polymers and blends of PBA/phenoxy, PEA/phenoxy, and PBA/PEA were selected to give the evident results. Their morphological behaviors, lamellae assembly, and crystallization behavior were characterized by using polarized polymer microscopy (POM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Thermal behaviors of each neat polymers and blends, and also the miscibility of PBA/PEA blends were examined by using differential scanning calorimetry (DSC). Fourier-transform infrared (FTIR) spectroscopy and wide-angle X-ray diffractometer (WAXD) had been performed to ensure the polymorphism transition, specific interaction, and crystallographic of the blends.
Blending the amorphous phenoxy with either PBA or PEA apparently shows a different effects on the lamella assembly and morphology of these crystalline polyesters. The AFM phase images on PBA/phenoxy blends (90/10, 80/20) clearly show that phenoxy disrupts the regular alternating sequences of edge-on and flat-on lamellae of original ring-banded spherulites in neat PBA into disordered patterns of ringless spherulites in PBA/phenoxy blend. Addition of the amorphous phenoxy into PBA also enhances the formation of thermodynamically more preferred α-form crystal in the PBA/phenoxy blend. While in PEA, the addition of phenoxy does not influence its ring-banded pattern. This bulky linking pendent group promotes the dominating feature of edge-on fiberillae in PEA and retards the lamellae bending significantly to the tangential direction. Thus in PEA/phenoxy blend spherulites remain appear in negative birefringence when crystallized at 15 oC, while in neat PEA, spherulites already turn to positive birefringence. Phenoxy can also effect changes in the spherulite size of PEA.
The existance of single Tg composition dependent and optical transparency prove the miscibility of this blend system. Interestingly, a unique inter-wined lamellae growth, appearing as bird-nest-like morphology, is seen for all Tc examined at the middle composition of PBA/PEA between 10/90 to 40/60, within which range the blend compositions coincidently show a weak interaction. Observations are focused for Tc = 30 oC, of which both neat PBA and PEA show ring-banded morphology that could be distinguished easily from the nest-like morphology. Apparently, the morphology transition from ring-banded to nest-like morphology is also accompanied by inter-lamellar cavities, which are formed due to random crystals arrangements or re-orientations when PBA and PEA are crystallized in mixtures in series primary PBA and secondary PEA crystallizations under diffusion controlling condition. These randomness and interlamellar cavities are promoted by the weak interactions and crystallization rate differences between PBA and PEA within a specific composition range.

中文摘要 ii
ABSTRACT iv
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
CHAPTER 1 INTRODUCTION 1
1.1 Background of Study 1
1.2 Research Motivation 2
1.3 Direction of Study 3
CHAPTER 2 THEORETICAL BACKGROUND 4
2.1 Aliphatic Polyesters 4
2.2 Miscibility of Binary Polymer Blends 4
2.2.1 Gordon-Taylor expression 5
2.2.2 Fox expression 6
2.2.3 Kwei expression 6
2.3 Crystallization in Polymer Blends 6
2.3.1 Crystallization theory 6
2.3.2 Crystallization in crystalline/amorphous polymer blends 9
2.3.3 Crystallization in crystalline/crystalline polymer blends 10
2.4 Spherulitic Morphology 11
2.4.1 Polymorphism 11
2.4.2 Flat-on and edge-on lamellae 14
2.4.3 Spherulites 17
2.5 Birefringence of Spherulites 20
CHAPTER 3 EXPERIMENTAL SECTION 22
3.1 Materials 22
3.2 Sample Preparation 23
3.3 Apparatus and Procedure 23
3.3.1 Differential scanning calorimeter (DSC) 23
3.3.2 Wide-angle X-ray diffractometer (WAXD) 24
3.3.3 Polarized optical microscopy (POM) 24
3.3.4 Atomic-force microscopy (AFM) 24
3.3.5 Scanning electron microscopy (SEM) 24
3.3.6 Fourier-transform infrared (FTIR) spectroscopy 24
CHAPTER 4 RESULT AND DISCUSSION 25
4.1 Morphology, Thermal Behavior, and Crystal Structure of Neat Systems 25
4.2 Effect on Blending Amorphous Phenoxy to Semicrystalline Poly(butylene adipate) 29
4.3 Effect on Blending Amorphous Phenoxy to Semicrystalline Poly(ethylene adipate) 37
4.3.1 Optical birefringent transition with respect to Tc 37
4.3.2 AFM analyses on positive vs. negative-birefringence spherulites 39
4.3.3 AFM characterization on double ring-banded spherulites with positive-negative-birefringence 44
4.3.4 Thermal and crystallographic characterizations on ringless vs. banded spherulites 48
4.4 Effect on Blending PBA and PEA 50
4.4.1 Phase behavior and morphology of PBA/PEA blends 50
4.4.2 Thermal behavior and its comparison to the morphology 56
4.4.3 Crystallographic and interaction characterization of PBA/PEA blends 59
CHAPTER 5 CONCLUSION 62
REFERENCES 65
Appendix A 74
A-1 PBA/Phenoxy Blend System 74
A-2 PBA/PEA Blend System 77

[1]Y.-T. Shieh, M.-S. Lee, and S.-A. Chen, Interaction Parameters of Crystalline/Crystalline Polypropylene/Poly(butene-1) Blends: Effect of Molecular Fractionation, Journal of Polymer Science Part B: Polymer Physics, vol. 40, pp. 638-648, 2002.
[2]J.-B. Zeng, Q.-Y. Zhu, Y.-D. Li, Z.-C. Qiu, and Y.-Z. Wang, Unique Crystalline/Crystalline Polymer Blends of Poly(ethylene succinate) and Poly(p-dioxanone): Miscibility and Crystallization Behaviors, The Journal of Physical Chemistry B, vol. 114, pp. 14827-14833, 2010.
[3]J. P. Penning and R. St. John Manley, Miscible Blends of Two Crystalline Polymers. 2. Crystallization Kinetics and Morphology in Blends of Poly(vinylidene fluoride) and Poly(1,4-butylene adipate), Macromolecules, vol. 29, pp. 84-90, 1996.
[4]Y. Li, A. Kaito, and S. Horiuchi, Biaxially Oriented Lamellar Morphology Formed by the Confined Crystallization of Poly(1,4-butylene succinate) in the Oriented Blend with Poly(vinylidene fluoride), Macromolecules, vol. 37, pp. 2119-2127, 2004.
[5]J. Liu, H.-M. Ye, J. Xu, and B.-H. Guo, Formation of Ring-Banded Spherulites of α and β Modifications in Poly(butylene adipate), Polymer, vol. 52, pp. 4619-4630, 2011.
[6]L. Yu, K. Dean, and L. Li, Polymer Blends and Composites from Renewable Resources, Progress in Polymer Science, vol. 31, pp. 576-602, 2006.
[7]P. Pan and Y. Inoue, Polymorphism and Isomorphism in Biodegradable Polyesters, Progress in Polymer Science, vol. 34, pp. 605-640, 2009.
[8]T. Iwata and Y. Doi, Crystal Structure and Biodegradation of Aliphatic Polyester Crystals, Macromolecular Chemistry and Physics, vol. 200, pp. 2429-2442, 1999.
[9]Z. Gan, K. Kuwabara, H. Abe, T. Iwata, and Y. Doi, The Role of Polymorphic Crystal Structure and Morphology in Enzymatic Degradation of Melt-Crystallized Poly(butylene adipate) Films, Polymer Degradation and Stability, vol. 87, pp. 191-199, 2005.
[10]J. E. Harris, S. H. Goh, D. R. Paul, and J. W. Barlow, Miscible Binary Blends Containing the Polyhydroxy Ether of Bisphenol-A and Various Aliphatic Polyesters, Journal of Applied Polymer Science, vol. 27, pp. 839-855, 1982.
[11]C. Uriarte, J. Alfageme, A. Etxeberria, and J. J. Iruin, Gas Chromatographic Measurements of Solute Diffusion in Blends of Phenoxy and Poly(1,4-butylene adipate), European Polymer Journal, vol. 31, pp. 609-614, 1995.
[12]M. Mochizuki and M. Hirami, Structural Effects on the Biodegradation of Aliphatic Polyesters, Polymers for Advanced Technologies, vol. 8, pp. 203-209, 1997.
[13]T. Zorba, K. Chrissafis, K. M. Paraskevopoulos, and D. N. Bikiaris, Synthesis, Characterization and Thermal Degradation Mechanism of Three Poly(alkylene adipate)s: Comparative Study, Polymer Degradation and Stability, vol. 92, pp. 222-230, 2007.
[14]X. Lu and R. A. Weiss, Relationship Between the Glass Transition Temperature and the Interaction Parameter of Miscible Binary Polymer Blends, Macromolecules, vol. 25, pp. 3242-3246, 1992.
[15]T. G. Fox, Influence of Diluent and of Copolymer Composition on the Glass Temperature of A Polymer System, Bulletin of the American Physical Society, vol. 1, pp. 123-125, 1956.
[16]M. Gordon and J. S. Taylor, Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Non-Crystalline Copolymers, Journal of Applied Chemistry, vol. 2, pp. 493-500, 1952.
[17]T. K. Kwei, The Effect of Hydrogen Bonding on the Glass Transition Temperatures of Polymer Mixtures, Journal of Polymer Science: Polymer Letters Edition, vol. 22, pp. 307-313, 1984.
[18]T. K. Kwei, E. M. Pearce, J. R. Pennacchia, and M. Charton, Correlation Between the Glass Transition Temperatures of Polymer Mixtures and Intermolecular Force Parameters, Macromolecules, vol. 20, pp. 1174-1176, 1987.
[19]R. Pinal, Entropy of Mixing and the Glass Transition of Amorphous Mixtures, Entropy, vol. 10, pp. 207-223, 2008.
[20]A. V. Lesikar, Effect of Association Complexes on the Glass Transition in Organic Halide Mixtures, The Journal of Physical Chemistry, vol. 80, pp. 1005-1011, 1976.
[21]V. Ratta, Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides, Phd, Chemical Engineering, Virginia Tech, United States, 1999.
[22]J. D. Hoffman, Regime III Crystallization in Melt-Crystallized Polymers: The Variable Cluster Model of Chain Folding, Polymer, vol. 24, pp. 3-26, 1983.
[23]J. D. Hoffman, G. T. Davis, and J. I. J. Lauritzen. Treatise on Solid State Chemistry. 3. 1976.
[24]P. J. Phillips and N. Vatansever, Regime Transitions in Fractions of Cis-Polyisoprene, Macromolecules, vol. 20, pp. 2138-2146, 1987.
[25]M. L. Di Lorenzo, Spherulite Growth Rates in Binary Polymer Blends, Progress in Polymer Science, vol. 28, pp. 663-689, 2003.
[26]A. Ajji, M. M. Dumoulin, K. Akkapeddi, V. Everaert, K. Bahari, L. A. Goettler, B. Brown, S. H. Goh, J. M. G. Cowie, G. Groeninckx, M. R. Hu, V. N. S. Pendyala, T. Inoue, L. M. Robeson, M. R. Kamal, J. J. Scobbo, Jr., I. J. Mcewen, G. Z.-H. Shi, S. Krause, A. Singh, L. H. Sperling, L. A. Utracki, M. Vanneste, And S. F. Xavier. Polymer Blends Handbook. 1. 2002.
[27]H. M. Shabana, R. H. Olley, D. C. Bassett, and B. J. Jungnickel, Phase Separation Induced by Crystallization in Blends of Polycaprolactone and Polystyrene: An Investigation by Etching and Electron Microscopy, Polymer, vol. 41, pp. 5513-5523, 2000.
[28]R. S. Stein, F. B. Khambatta, F. P. Warner, T. Russell, A. Escala, and E. Balizer, X-Ray and Optical Studies of the Morphology of Polymer Blends, Journal of Polymer Science: Polymer Symposia, vol. 63, pp. 313-328, 1978.
[29]H.-L. Chen, L.-J. Li, and T.-L. Lin, Formation of Segregation Morphology in Crystalline/Amorphous Polymer Blends:  Molecular Weight Effect, Macromolecules, vol. 31, pp. 2255-2264, 1998.
[30]P. Svoboda, J. Kressler, T. Chiba, T. Inoue, and H. W. Kammer, Light-Scattering and TEM Analyses of Virtual Upper Critical Solution Temperature Behavior in PCL/SAN Blends, Macromolecules, vol. 27, pp. 1154-1159, 1994.
[31]H. D. Keith and F. J. Padden, Spherulitic Crystallization from the Melt. I. Fractionation and Impurity Segregation and Their Influence on Crystalline Morphology, Journal of Applied Physics, vol. 35, p. 1270, 1964.
[32]R. J. Pazur, P. J. Hocking, S. Raymond, and R. H. Marchessault, Crystal Structure of Syndiotactic Poly(β-hydroxybutyrate) from X-ray Fiber and Powder Diffraction Analyses and Molecular Modeling, Macromolecules, vol. 31, pp. 6585-6592, 1998.
[33]B. Kalb and A. J. Pennings, General Crystallization Behaviour of Poly(l-lactic acid), Polymer, vol. 21, pp. 607-612, 1980.
[34]W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, and P. Zugenmaier, Crystal Structure, Conformation and Morphology of Solution-Spun Poly(L-lactide) Fibers, Macromolecules, vol. 23, pp. 634-642, 1990.
[35]Y. Ichikawa, H. Kondo, Y. Igarashi, K. Noguchi, K. Okuyama, and J. Washiyama, Crystal Structures of α and β Forms of Poly(tetramethylene succinate), Polymer, vol. 41, pp. 4719-4727, 2000.
[36]R. Minke and J. Blackwell, Polymorphic Structures of Poly(tetramethylene adipate), Journal of Macromolecular Science, Part B, vol. 16, pp. 407-417, 1979.
[37]R. Minke and J. Blackwell, Single Crystals of Poly(tetramethylene adipate), Journal of Macromolecular Science, Part B, vol. 18, pp. 233-255, 1980.
[38]Z. Gan, K. Kuwabara, H. Abe, T. Iwata, and Y. Doi, Metastability and Transformation of Polymorphic Crystals in Biodegradable Poly(butylene adipate), Biomacromolecules, vol. 5, pp. 371-378, 2004.
[39]E. M. Woo and M. C. Wu, Thermal and X-Ray Analysis of Polymorphic Crystals, Melting, and Crystalline Transformation in Poly(butylene adipate), Journal of Polymer Science Part B: Polymer Physics, vol. 43, pp. 1662-1672, 2005.
[40]L. Zhao, X. Wang, L. Li, and Z. Gan, Structural Analysis of Poly(butylene adipate) Banded Spherulites from Their Biodegradation Behavior, Polymer, vol. 48, pp. 6152-6161, 2007.
[41]Z. Gan, H. Abe, and Y. Doi, Temperature-Induced Polymorphic Crystals of Poly(butylene adipate), Macromolecular Chemistry and Physics, vol. 203, pp. 2369-2374, 2002.
[42]M. C. Wu and E. M. Woo, Effects of α-Form or β-Form Nuclei on Polymorphic Crystalline Morphology of Poly(butylene adipate), Polymer International, vol. 54, pp. 1681-1688, 2005.
[43]J. Yang, Z. Li, P. Pan, B. Zhu, T. Dong, and Y. Inoue, Temperature-Dependent Polymorphic Crystalline Structure and Melting Behavior of Poly(butylene adipate) Investigated by Time-Resolved FTIR Spectroscopy, Journal of Polymer Science Part B: Polymer Physics, vol. 47, pp. 1997-2007, 2009.
[44]C. Yan, Y. Zhang, Y. Hu, Y. Ozaki, D. Shen, Z. Gan, S. Yan, and I. Takahashi, Melt Crystallization and Crystal Transition of Poly(butylene adipate) Revealed by Infrared Spectroscopy, The Journal of Physical Chemistry B, vol. 112, pp. 3311-3314, 2008.
[45]L. Zhao and Z. Gan, Effect of Copolymerized Butylene Terephthalate Chains on Polymorphism and Enzymatic Degradation of Poly(butylene adipate), Polymer Degradation and Stability, vol. 91, pp. 2429-2436, 2006.
[46]X. Sun, F. Pi, J. Zhang, I. Takahashi, F. Wang, S. Yan, and Y. Ozaki, Study on the Phase Transition Behavior of Poly(butylene adipate) in its Blends with Poly(vinyl phenol), The Journal of Physical Chemistry B, vol. 115, pp. 1950-1957, 2011.
[47]J. Yang, P. Pan, L. Hua, B. Zhu, T. Dong, and Y. Inoue, Polymorphic Crystallization and Phase Transition of Poly(butylene adipate) in Its Miscible Crystalline/Crystalline Blend with Poly(vinylidene fluoride), Macromolecules, vol. 43, pp. 8610-8618, 2010.
[48]Y. Sun, H. Li, Y. Huang, E. Chen, L. Zhao, Z. Gan, and S. Yan, Epitaxial Crystallization of Poly(butylene adipate) on Highly Oriented Polyethylene Thin Film, Macromolecules, vol. 38, pp. 2739-2743, 2005.
[49]Y. Sun, H. Li, Y. Huang, E. Chen, Z. Gan, and S. Yan, Epitaxial Crystallization of Poly(butylene adipate) on Highly Oriented Isotactic Polypropylene Thin Film, Polymer, vol. 47, pp. 2455-2459, 2006.
[50]K. Noguchi, H. Kondo, Y. Ichikawa, K. Okuyama, and J. Washiyama, Molecular and crystal structure of poly(tetramethylene adipate) α form based on synchrotron X-ray fiber diffraction, Polymer, vol. 46, pp. 10823-10830, 2005.
[51]T. Iwata, S. Kobayashi, K. Tabata, N. Yonezawa, and Y. Doi, Crystal Structure, Thermal Behavior and Enzymatic Degradation of Poly(tetramethylene adipate) Solution-Grown Chain-Folded Lamellar Crystals, Macromolecular Bioscience, vol. 4, pp. 296-307, 2004.
[52]Y.-X. Liu and E.-Q. Chen, Polymer Crystallization of Ultrathin Films on Solid Substrates, Coordination Chemistry Reviews, vol. 254, pp. 1011-1037, 2010.
[53]Y. Wang, M. Rafailovich, J. Sokolov, D. Gersappe, T. Araki, Y. Zou, A. D. L. Kilcoyne, H. Ade, G. Marom, and A. Lustiger, Substrate Effect on the Melting Temperature of Thin Polyethylene Films, Physical Review Letters, vol. 96, p. 028303, 2006.
[54]Y. Wang, S. Ge, M. Rafailovich, J. Sokolov, Y. Zou, H. Ade, J. Lüning, A. Lustiger, and G. Maron, Crystallization in the Thin and Ultrathin Films of Poly(ethylene−vinyl acetate) and Linear Low-Density Polyethylene, Macromolecules, vol. 37, pp. 3319-3327, 2004.
[55]Y. Wang, C.-M. Chan, K.-M. Ng, and L. Li, What Controls the Lamellar Orientation at the Surface of Polymer Films during Crystallization?, Macromolecules, vol. 41, pp. 2548-2553, 2008.
[56]R. S. Stein, P. Erhardt, J. J. Van Aartsen, T. S. Clough, And M. Rhodes, Theory of Light Scattering from Oriented and Fiber Structures, Journal of Polymer Science Part C: Polymer Symposia, vol. 13, pp. 1-35, 1966.
[57]J. M. Marentette and G. R. Brown, Polymer Spherulites: I. Birefringence and Morphology, Journal of Chemical Education, vol. 70, p. 435, 1993.
[58]D. I. Bower, An Introduction to Polymer Physics. United States, America: Cambridge University Press, 2002.
[59]Y. Duan, Y. Jiang, S. Jiang, L. Li, S. Yan, and J. M. Schultz, Depletion-Induced Nonbirefringent Banding in Thin Isotactic Polystyrene Thin Films, Macromolecules, vol. 37, pp. 9283-9286, 2004.
[60]H. D. Keith and F. J. Padden, The Optical Behavior of Spherulites in Crystalline Polymers. Part I. Calculation of Theoretical Extinction Patterns in Spherulites with Twisting Crystalline Orientation, Journal of Polymer Science, vol. 39, pp. 101-122, 1959.
[61]H. D. Keith and F. J. Padden, The Optical Behavior of Spherulites in Crystalline Polymers. Part II. The Growth and Structure of the Spherulites, Journal of Polymer Science, vol. 39, pp. 123-138, 1959.
[62]H. D. Keith and F. J. Padden Jr, Twisting Orientation and the Role of Transient States in Polymer Crystallization, Polymer, vol. 25, pp. 28-42, 1984.
[63]H. D. Keith and F. J. Padden, Banding in Polyethylene and Other Spherulites, Macromolecules, vol. 29, pp. 7776-7786, 1996.
[64]B. Lotz and S. Z. D. Cheng, A Critical Assessment of Unbalanced Surface Stresses as the Mechanical Origin of Twisting and Scrolling of Polymer Crystals, Polymer, vol. 46, pp. 577-610, 2005.
[65]Y. Duan, Y. Zhang, S. Yan, and J. M. Schultz, In Situ AFM Study of the Growth of Banded Hedritic Structures in Thin Films of Isotactic Polystyrene, Polymer, vol. 46, pp. 9015-9021, 2005.
[66]E. M. Woo, L.-Y. Wang, and S. Nurkhamidah, Crystal Lamellae of Mutually Perpendicular Orientations by Dissecting onto Interiors of Poly(ethylene adipate) Spherulites Crystallized in Bulk Form, Macromolecules, vol. 45, pp. 1375-1383, 2012.
[67]E. Murayama. Optical Properties of Ringed Spherulites. 2002 (Available: http://www.op.titech.ac.jp/lab/okui/murayam/ringed_en.pdf)
[68]W. Shi, J. Yang, Y. Zhang, J. Luo, Y. Liang, and C. C. Han, Lamellar Orientation Inversion under Dynamic Interplay between Crystallization and Phase Separation, Macromolecules, vol. 45, pp. 941-950, 2012.
[69]Y. Tokiwa, T. Ando, T. Suzuki, and K. Takeda, Biodegradation of Synthetic Polymers Containing Ester Bonds, in Agricultural and Synthetic Polymers. vol. 433, ed: American Chemical Society, pp. 136-148. 1990
[70]Y. Tokiwa, B. Calabia, C. Ugwu, and S. Aiba, Biodegradability of Plastics, International Journal of Molecular Sciences, vol. 10, pp. 3722-3742, 2009.
[71]J. Yang, P. Pan, T. Dong, and Y. Inoue, Crystallization Kinetics and Crystalline Structure of Biodegradable Poly(ethylene adipate), Polymer, vol. 51, pp. 807-815, 2010.
[72]E. M. Woo, P. L. Wu, M. C. Wu, and K. C. Yan, Thermal Behavior of Ring-Band versus Maltese-Cross Spherulites: Case of Monomorphic Poly(ethylene adipate), Macromolecular Chemistry and Physics, vol. 207, pp. 2232-2243, 2006.
[73]T. Wang, H. Wang, H. Li, Z. Gan, and S. Yan, Banded Spherulitic Structures of Poly(ethylene adipate), Poly(butylene succinate) and in Their Blends, Physical Chemistry Chemical Physics, vol. 11, pp. 1619-1627, 2009.
[74]E. Pouget, A. Almontassir, M. T. Casas, and J. Puiggalí, On the Crystalline Structures of Poly(tetramethylene adipate), Macromolecules, vol. 36, pp. 698-705, 2003.
[75]S. Y. Hobbs and F. W. Billmeyer, Crystal Unit-Cell Dimensions and Densities of Linear Aliphatic Polyesters, Journal of Polymer Science Part A-2: Polymer Physics, vol. 7, pp. 1119-1121, 1969.
[76]A. Turner-Jones and C. W. Bunn, The Crystal Structure of Polyethylene Adipate and Polyethylene Suberate, Acta Crystallographica, vol. 15, pp. 105-113, 1962.
[77]E. M. Woo, K. C. Yen, and M. C. Wu, Analysis of Multiple Melting Behavior of Spherulites Comprising Ring-Band Shell/Ringless Core in Polymorphic Poly(butylene adipate), Journal of Polymer Science Part B: Polymer Physics, vol. 46, pp. 892-899, 2008.
[78]A. Frömsdorf, E. M. Woo, L.-T. Lee, Y.-F. Chen, and S. Förster, Atomic Force Microscopy Characterization and Interpretation of Thin-Film Poly(butylene adipate) Spherulites with Ring Bands, Macromolecular Rapid Communications, vol. 29, pp. 1322-1328, 2008.
[79]H.-B. Chen, L. Chen, Y. Zhang, J.-J. Zhang, and Y.-Z. Wang, Morphology and Interference Color in Spherulite of Poly(trimethylene terephthalate) Copolyester with Bulky Linking Pendent Group, Physical Chemistry Chemical Physics, vol. 13, pp. 11067-11075, 2011.
[80]S. Sasaki, Y. Sakaki, A. Takahara, and T. Kajiyama, Microscopic Lamellar Organization in High-Density Polyethylene Banded Spherulites Studied by Scanning Probe Microscopy, Polymer, vol. 43, pp. 3441-3446, 2002.
[81]L. Markey, J. J. Janimak, and G. C. Stevens, Modelling and Simulation of the Permanganic Etching of Banded Spherulitic Polyethylene: Correlation with AFM Observations, Polymer, vol. 42, pp. 6221-6230, 2001.
[82]D. A. Ivanov and A. M. Jonas, Isothermal Growth and Reorganization upon Heating of a Single Poly(aryl−ether−ether−ketone) (PEEK) Spherulite, As Imaged by Atomic Force Microscopy, Macromolecules, vol. 31, pp. 4546-4550, 1998.
[83]L. Li, C.-M. Chan, J.-X. Li, K.-M. Ng, K.-L. Yeung, and L.-T. Weng, A Direct Observation of the Formation of Nuclei and the Development of Lamellae in Polymer Spherulites, Macromolecules, vol. 32, pp. 8240-8242, 1999.
[84]J. Chen and D. Yang, Nature of the Ring-Banded Spherulites in Blends of Aromatic Poly(ether ketone)s, Macromolecular Rapid Communications, vol. 25, pp. 1425-1428, 2004.
[85]A. Meyer, K. C. Yen, S.-H. Li, S. Förster, and E. M. Woo, Atomic-Force and Optical Microscopy Investigations on Thin-Film Morphology of Spherulites in Melt-Crystallized Poly(ethylene adipate), Industrial & Engineering Chemistry Research, vol. 49, pp. 12084-12092, 2010.
[86]Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, and T. He, Rhythmic Growth-Induced Concentric Ring-Banded Structures in Poly(ε-caprolactone) Solution-Casting Films Obtained at the Slow Solvent Evaporation Rate, Macromolecules, vol. 40, pp. 4381-4385, 2007.
[87]Z. Wang, G. C. Alfonso, Z. Hu, J. Zhang, and T. He, Rhythmic Growth-Induced Ring-Banded Spherulites with Radial Periodic Variation of Thicknesses Grown from Poly(ε-caprolactone) Solution with Constant Concentration, Macromolecules, vol. 41, pp. 7584-7595, 2008.
[88]D. R. Norton and A. Keller, The Spherulitic and Lamellar Morphology of Melt-Crystallized Isotactic Polypropylene, Polymer, vol. 26, pp. 704-716, 1985.
[89]J. Chen and D. Yang, Phase Behavior and Rhythmically Grown Ring-Banded Spherulites in Blends of Liquid Crystalline Poly(aryl ether ketone) and Poly(aryl ether ether ketone), Macromolecules, vol. 38, pp. 3371-3379, 2005.
[90]J. Chen and D. Yang, Rhythmic Growth of Ring-Banded Spherulites in Blends of Liquid Crystalline Methoxy-Poly(aryl ether ketone) and Poly(aryl ether ether ketone), Journal of Polymer Science Part B: Polymer Physics, vol. 45, pp. 3011-3024, 2007.
[91]D. Maillard and R. E. Prud'homme, Crystallization of Ultrathin Films of Polylactides: From Chain Chirality to Lamella Curvature and Twisting, Macromolecules, vol. 41, pp. 1705-1712, 2008.
[92]H.-M. Ye, J. Xu, B.-H. Guo, and T. Iwata, Left- or Right-Handed Lamellar Twists in Poly[(R)-3-hydroxyvalerate] Banded Spherulite: Dependence on Growth Axis, Macromolecules, vol. 42, pp. 694-701, 2008.
[93]Y. Li, H. Huang, T. He, and Z. Wang, Rhythmic Growth Combined with Lamellar Twisting Induces Poly(ethylene adipate) Nested Ring-Banded Structures, ACS Macro Letters, vol. 1, pp. 154-158, 2011.
[94]Y. He, B. Zhu, and Y. Inoue, Hydrogen Bonds in Polymer Blends, Progress in Polymer Science, vol. 29, pp. 1021-1051, 2004.
[95]T. Wang, H. Li, F. Wang, J. M. Schultz, and S. Yan, Morphologies and Deformation Behavior of Poly(vinylidene fluoride)/Poly(butylene succinate) Blends with Variety of Blend Ratios and under Different Preparation Conditions, Polymer Chemistry, vol. 2, pp. 1688-1698, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊