跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳品宏
研究生(外文):Pin-HongChen
論文名稱:以 Shewanella oneidensis 構成之微生物型燃料電池系統於電池槽體設計與電能效應之探討
論文名稱(外文):Investigation of power efficiency and cell-reactor design from the microbial biofuel cell system comprised by Shewanella oneidensis
指導教授:許梅娟許梅娟引用關係
指導教授(外文):Mei-Jywan Syu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:微生物燃料電池Rhodopseudomonas sphaeroidesShewanella oneidensispyrrole-3-carboxylic acid碳紙反應器模組氧化還原對
外文關鍵詞:Microbial fuel cellRhodopseudomonas sphaeroidesShewanella oneidensispyrrole-3-carboxylic acidcarbon paperconfigurationmediator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 ...................I
ABSTRACT...................II
誌謝...................III
目錄...................IV
表目錄...................VI
圖目錄...................VII
第一章 緒論...................1
1.1 綠色能源...................1
1.2 燃料電池的發展...................1
1.3 生物燃料電池...................2
1.3.1微生物型燃料電池...................3
1.3.2 微生物型燃料電池之反應器設計...................4
1.3.3 微生物型燃料電池電極之設計...................9
1.4 燃料電池電極表面之修飾...................11
1.4.1 導電性高分子之介紹...................11
1.4.2 電極表面之修飾...................12
1.5 微生物燃料電池之使用菌株...................13
1.5.1光合菌的發電機制...................13
1.5.2 非光合菌組成之燃料電池發電機制...................14
1.6 研究動機與目的...................15
第二章 實驗方法與材料...................16
2.1 微生物培養...................16
2.1.1 菌體之基礎培養...................16
2.1.2 微生物燃料電池操作用之培養基...................16
2.2 微生物燃料電池電極之製備...................17
2.2.1 碳紙電極之製備...................17
2.2.2 電極之導電性高分子修飾...................17
2.3 微生物燃料電池之放電測試...................18
2.3.1 雙槽式微生物燃料電池之組裝...................19
2.3.2單槽式空氣陰極型燃料電池之組裝...................19
2.3.3 極化曲線與發電效率密度之檢測...................19
2.4 電極特性之分析...................19
2.4.1 以掃描式電子顯微鏡 (SEM) 觀察陽極電極表面................19
2.4.2 燃料電池組之交流阻抗分析...................19
2.5 藥品與材料...................20
2.6 儀器設備...................22
第三章 結果與討論...................23
3.1 導電性高分子...................23
3.1.1 導電性高分子之表面型態與表面觀察...................24
3.2 雙槽式燃料電池之發電效率探討...................27
3.2.1 不同電極表面修飾對於雙槽式燃料電池發電效率之影響..........28
3.2.2 加入不同碳源對於燃料電池發電效率的影響...................30
3.2.3 不同陰陽極間距以及不同電極面積大小對燃料電池操作之影響.......34
3.2.4 以不同菌種為觸媒之微生物型燃料電池系統之放電差異............36
3.2.5 不同供氧環境對雙槽式燃料電池操作之影響...................38
3.3 單槽式燃料電池之發電效率探討...................40
3.3.1 使用不同菌株做為單槽式燃料電池觸媒之影響..................41
3.3.2 不同陰陽電極間距對於單槽式燃料電池發電效率之影響............42
3.3.3 不同高分子修飾方式製備之電極對燃料電池表現之影響............46
3.4 單槽式微生物型燃料電池系統反應器之探討...................49
3.4.1 單槽式微生物燃料電池發電效率與碳源濃度之關係................50
3.4.2 不同電極表面修飾對單槽式燃料電池發電效率與系統碳源濃度之影響...51
3.4.3 系統中加入不同導電還原對後對燃料電池之影響.................55
3.4.4 電聚合不同圈數之電極對燃料電池發電效率之影響................59
3.5 以交流阻抗分析不同燃料電池反應器之阻抗大小...................62
第四章 結論...................66
參考文獻...................68
[1] J.M. Andujar, F. Segura ,Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews 13 2309–2322, 2009.
[2] A. Boudghene Stambouli, E. Traversa Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustain-able Energy Reviews, 6 (5) 433–455, 2002.
[3] Jung-Ho Wee, Applications of proton exchange membrane fuel cell systems, Renew-able and Sustainable Energy Reviews 11 1720–1738, 2007.
[4] Fuyuki Sato, Makoto Togo, Mohammed Kamrul Islam, Tomokazu Matsue, Junichi Kosuge, Noboru Fukasaku, Satoshi Kurosawa, Matsuhiko Nishizawa, Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator, Electrochemistry Communications 7 643–647, 2005.
[5] Jin Young Lee, Hyun Yong Shin, Seong Woo Kang, Chulhwan Park, Seung Wook Kim, Application of an enzyme-based biofuel cell containing a bioelectrode mod-ified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum, Enzyme and Microbial Technology 48 80–84, 2011.
[6] S. Venkata Mohan, S. Veer Raghavulu, P.N. Sarma, Biochemical evaluation of bio-electricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane, Biosensors and Bioelectronics 23 1326–1332, 2008.
[7] Manuel A. Rodrigo, Pablo Canizares, Justo Lobato, Effect of the electron-acceptors on the performance of a MFC, Bioresource Technology 101 7014–7018, 2010.
[8] Jung Rae Kim, Giuliano C. Premier, Freda R. Hawkes, Richard M. Dinsdale, Alan J. Guwy, Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode, Journal of Power Sources 187 393–399, 2009.
[9] Chontisa Sukkasem, Shoutao Xu, Sunhwa Park, Piyarat Boonsawang, Hong Liu, Effect of nitrate on the performance of single chamber air cathode microbial fuel cells, water research 42 4743 – 4750, 2008.
[10] Almeida, J.S., Julio, S.M., Reis, M.A.M., Carrondo, M.J.T., Nitrite inhibition of de-nitrification by Pseudomonas fluorescens. Biotechnology Bioengineering 46,
194–201, 1995.
[11] H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environmental Science Technology 39 5488–5493, 2005.
[12] Bradley R. Ringeisen, Ricky Ray, Brenda Little, A miniature microbial fuel cell op-erating with an aerobic anode chamber, Journal of Power Sources 165 591–597, 2007.
[13] M.M. Ghangrekar, V.B. Shinde, Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity produc-tion, Bioresource Technology 98 2879–2885, 2007.
[14] Magnuson, T.S., Hodges Myerson, A.L., Lovely, D.R., Characterization of the membrane-bound NADH-dependent Fe(III) reductase from the dissmilatory Fe(III)-reducing bacterium geobacteria sulphur reducens. FEMS Microbial. Lett 185, 205–211, 2000.
[15] Adam J. Hutchinson, Justin C. Tokash, Bruce E. Logan, Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells, Journal of Power Sources 196 9213–9219, 2011.
[16] Mohammed H. Al-Saleh, Uttandaraman Sundararaj, A review of vapor grown
carbon nanofiber/polymer conductive composites, carbon 47 2 –22, 2009.
[17] Saïd Sadki, Philippe Schottland, Nancy Brodie and Guillaume Sabourau, The mechanisms of pyrrole electropolymerization, Chem. Soc. Rev., 29, 283–293, 2000. [18] Yong Yuan, Shungui Zhou, Li Zhuang, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells, Journal of Power
Sources 195, 3490-3493, 2010.
[19] Yongjin Zou, John Pisciotta, Ilia V. Baskakov, Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells, Bioelectrochemistry 79, 50–56, 2010.
[20] Ronib M. Allen, H. Peter Bennetto, Electricity Production from Carbohydrates, Ap-plied Biochemistry and Bioteehnology Vol. 39/40, 1993.
[21] Rashmi Chandra, G. Venkata Subhash, S. Venkata Mohan, Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity, Bioresource Technology 109, 46–56, 2012.
[22] Kartik S. Madiraju, Darwin Lyew, Robert Kok, Vijaya Raghavan, Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell, Biore-source Technolog. 2012.
[23] Miriam Rosenbaum, Zhen He, Largus T Angenent, Light energy to bioelectricity: photosynthetic microbial fuel cells, Current Opinion in Biotechnology, 21:259–264 , 2010.
[24] Justin C. Biffinger, Ricky Ray, Brenda J. Little, Lisa A. Fitzgerald, Meghann Rib-bens, Steven E. Finkel, Bradley R. Ringeisen, Simultaneous Analysis of Physiologi-cal and Electrical Output Changes in an Operating Microbial Fuel Cell With She-wanella oneidensis, Biotechnology and Bioengineering, Vol. 103, No. 3, June 15, 2009
[25] P.M. Ayyasamy, S. Chun, S. Lee, Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters, J. Hazard. Mater. 161,1095–1102, 2009.
[26] Z. Dawood, V.S. Brozel, Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters, J. Appl. Microbiol. 84, 929–936, 1998.
[27] Anand Jain, Xiaoming Zhang, Gabriele Pastorella, Jack O. Connolly, Niamh Barry, Robert Woolley, Satheesh Krishnamurthy, Enrico Marsili, Electron transfer me-chanism in Shewanella loihica PV-4 biofilms formed at graphite electrode, Bioelec-trochemistry, 2012.
[28] Gregory J. Newton, Shigeki Mori, Ryuhei Nakamura, Kazuhito Hashimoto, Kazuya Watanabe, Analyses of Current-Generating Mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in Microbial Fuel Cells, Appl. Environ. Microbiol., 75(24):7674, 2009
[29] Jeanine S Geelhoed, Hubertus VM Hamelers, Alfons JM Stams, Electrici-ty-mediated biological hydrogen production, Current Opinion in Microbiology, 13:307–315, 2012
[30] Sibel D. Roller, H. Peter Bennetto, Gerard M. Delaney, Jeremy R. Mason, John L. Stirling and Christopher F. Thurston, Electron-transfer Coupling in Microbial Fuel Cells: 1. Comparison of Redox-mediator Reduction Rates and Respiratory Rates of Bacteria, J. Chem. Tech. Biotechnol., 34B, 3-12, 1984.
[31] 江奇儒,聚砒洛奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池系統之應用,國立成功大學化學工程學系碩士論文 (2007)
[32] Mei-Jywan Syu, Yu-Sung Chang, ‘Ionic effect investigation of a potenti- ometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix’, Biosensors and Bioelectronics 24, 2671–2677, 2009
[33] Alan G. MacDiarmid. Nobel Prize 2000 Lecture ‘Synthesis Metals’: a novel role for organic polymers. Current Applied Physics 1, 269-279, 2009.
[34] 楊明長,分析電化學課程講義,國立成功大學化學工程學系,2010
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊