[1] J.M. Andujar, F. Segura ,Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews 13 2309–2322, 2009.
[2] A. Boudghene Stambouli, E. Traversa Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustain-able Energy Reviews, 6 (5) 433–455, 2002.
[3] Jung-Ho Wee, Applications of proton exchange membrane fuel cell systems, Renew-able and Sustainable Energy Reviews 11 1720–1738, 2007.
[4] Fuyuki Sato, Makoto Togo, Mohammed Kamrul Islam, Tomokazu Matsue, Junichi Kosuge, Noboru Fukasaku, Satoshi Kurosawa, Matsuhiko Nishizawa, Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator, Electrochemistry Communications 7 643–647, 2005.
[5] Jin Young Lee, Hyun Yong Shin, Seong Woo Kang, Chulhwan Park, Seung Wook Kim, Application of an enzyme-based biofuel cell containing a bioelectrode mod-ified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum, Enzyme and Microbial Technology 48 80–84, 2011.
[6] S. Venkata Mohan, S. Veer Raghavulu, P.N. Sarma, Biochemical evaluation of bio-electricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane, Biosensors and Bioelectronics 23 1326–1332, 2008.
[7] Manuel A. Rodrigo, Pablo Canizares, Justo Lobato, Effect of the electron-acceptors on the performance of a MFC, Bioresource Technology 101 7014–7018, 2010.
[8] Jung Rae Kim, Giuliano C. Premier, Freda R. Hawkes, Richard M. Dinsdale, Alan J. Guwy, Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode, Journal of Power Sources 187 393–399, 2009.
[9] Chontisa Sukkasem, Shoutao Xu, Sunhwa Park, Piyarat Boonsawang, Hong Liu, Effect of nitrate on the performance of single chamber air cathode microbial fuel cells, water research 42 4743 – 4750, 2008.
[10] Almeida, J.S., Julio, S.M., Reis, M.A.M., Carrondo, M.J.T., Nitrite inhibition of de-nitrification by Pseudomonas fluorescens. Biotechnology Bioengineering 46,
194–201, 1995.
[11] H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environmental Science Technology 39 5488–5493, 2005.
[12] Bradley R. Ringeisen, Ricky Ray, Brenda Little, A miniature microbial fuel cell op-erating with an aerobic anode chamber, Journal of Power Sources 165 591–597, 2007.
[13] M.M. Ghangrekar, V.B. Shinde, Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity produc-tion, Bioresource Technology 98 2879–2885, 2007.
[14] Magnuson, T.S., Hodges Myerson, A.L., Lovely, D.R., Characterization of the membrane-bound NADH-dependent Fe(III) reductase from the dissmilatory Fe(III)-reducing bacterium geobacteria sulphur reducens. FEMS Microbial. Lett 185, 205–211, 2000.
[15] Adam J. Hutchinson, Justin C. Tokash, Bruce E. Logan, Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells, Journal of Power Sources 196 9213–9219, 2011.
[16] Mohammed H. Al-Saleh, Uttandaraman Sundararaj, A review of vapor grown
carbon nanofiber/polymer conductive composites, carbon 47 2 –22, 2009.
[17] Saïd Sadki, Philippe Schottland, Nancy Brodie and Guillaume Sabourau, The mechanisms of pyrrole electropolymerization, Chem. Soc. Rev., 29, 283–293, 2000. [18] Yong Yuan, Shungui Zhou, Li Zhuang, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells, Journal of Power
Sources 195, 3490-3493, 2010.
[19] Yongjin Zou, John Pisciotta, Ilia V. Baskakov, Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells, Bioelectrochemistry 79, 50–56, 2010.
[20] Ronib M. Allen, H. Peter Bennetto, Electricity Production from Carbohydrates, Ap-plied Biochemistry and Bioteehnology Vol. 39/40, 1993.
[21] Rashmi Chandra, G. Venkata Subhash, S. Venkata Mohan, Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity, Bioresource Technology 109, 46–56, 2012.
[22] Kartik S. Madiraju, Darwin Lyew, Robert Kok, Vijaya Raghavan, Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell, Biore-source Technolog. 2012.
[23] Miriam Rosenbaum, Zhen He, Largus T Angenent, Light energy to bioelectricity: photosynthetic microbial fuel cells, Current Opinion in Biotechnology, 21:259–264 , 2010.
[24] Justin C. Biffinger, Ricky Ray, Brenda J. Little, Lisa A. Fitzgerald, Meghann Rib-bens, Steven E. Finkel, Bradley R. Ringeisen, Simultaneous Analysis of Physiologi-cal and Electrical Output Changes in an Operating Microbial Fuel Cell With She-wanella oneidensis, Biotechnology and Bioengineering, Vol. 103, No. 3, June 15, 2009
[25] P.M. Ayyasamy, S. Chun, S. Lee, Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters, J. Hazard. Mater. 161,1095–1102, 2009.
[26] Z. Dawood, V.S. Brozel, Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters, J. Appl. Microbiol. 84, 929–936, 1998.
[27] Anand Jain, Xiaoming Zhang, Gabriele Pastorella, Jack O. Connolly, Niamh Barry, Robert Woolley, Satheesh Krishnamurthy, Enrico Marsili, Electron transfer me-chanism in Shewanella loihica PV-4 biofilms formed at graphite electrode, Bioelec-trochemistry, 2012.
[28] Gregory J. Newton, Shigeki Mori, Ryuhei Nakamura, Kazuhito Hashimoto, Kazuya Watanabe, Analyses of Current-Generating Mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in Microbial Fuel Cells, Appl. Environ. Microbiol., 75(24):7674, 2009
[29] Jeanine S Geelhoed, Hubertus VM Hamelers, Alfons JM Stams, Electrici-ty-mediated biological hydrogen production, Current Opinion in Microbiology, 13:307–315, 2012
[30] Sibel D. Roller, H. Peter Bennetto, Gerard M. Delaney, Jeremy R. Mason, John L. Stirling and Christopher F. Thurston, Electron-transfer Coupling in Microbial Fuel Cells: 1. Comparison of Redox-mediator Reduction Rates and Respiratory Rates of Bacteria, J. Chem. Tech. Biotechnol., 34B, 3-12, 1984.
[31] 江奇儒,聚砒洛奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池系統之應用,國立成功大學化學工程學系碩士論文 (2007)[32] Mei-Jywan Syu, Yu-Sung Chang, ‘Ionic effect investigation of a potenti- ometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix’, Biosensors and Bioelectronics 24, 2671–2677, 2009
[33] Alan G. MacDiarmid. Nobel Prize 2000 Lecture ‘Synthesis Metals’: a novel role for organic polymers. Current Applied Physics 1, 269-279, 2009.
[34] 楊明長,分析電化學課程講義,國立成功大學化學工程學系,2010