跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昱翔
研究生(外文):Yu-HsiangWang
論文名稱:對掌性聚乳酸與異構型聚甲基丙烯酸甲酯摻合體晶板自組裝、撓曲現象及錯合晶體之探討
論文名稱(外文):Lamellar Assembly, Bending, and Complexing in Blends of Chiral Polylactides with Tactic Poly(methyl methacrylate)
指導教授:吳逸謨
指導教授(外文):Eamor Woo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:左式聚乳酸聚甲基丙烯酸甲酯錯合物
外文關鍵詞:PLLAPMMAcomplex
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分是利用微分掃描熱卡計(differential scanning calorimetry DSC)、廣角X光繞射儀(wide angle X-ray diffraction)、傅立葉轉換紅外線光譜儀(fourier-transform infrared spectroscopy FTIR)、偏光顯微鏡(polarized optical microscopy,POM)針對左式聚乳酸[poly(L-lactic acid),PLLA]/對排聚甲基丙烯酸甲酯[syndiotactic poly(methyl methacrylate),sPMMA]混摻系統進行相容性探討,然後更深入探討混摻系統在哪些條件下讓不同化學結構的高分子鏈之間產生complex、complex的特性和PLLA有什麼不同,最後則是利用循環結晶方式讓complex的球晶可以在POM下觀察到。而會產生complex的組成以LMw-PLLA/sPMMA重量百分比為90/10、80/20、70/30最為明顯,球晶型態利用偏光顯微鏡觀察得到為負型球晶。
第二部份是針對左式聚乳酸(PLLA)/雜排聚甲基丙烯酸甲酯[atactic poly(methyl methacrylate),aPMMA]混摻系統的相容性探討,進一步的方向是針對混摻系統所產生特殊球晶型態也就是兩顆球晶長在一起加以探討,稱之為mixed-morphology spherulite。針對Mixed-morphology spherulite的出現有對於可能影響的因素做出歸納,並指出影響程度為分子量和結晶溫度最大,其次為組成。除了影響因素之外,重要是因為mixed-morphology spherelite的出現讓我們觀察到球晶的晶板排列方式如何去影響到在偏光顯微鏡下看到的雙折射顏色,不同顏色同時存在相同的1/4圓區域中,這種現象出現可以和double ring-banded spherulite來做比較,因為文獻上普遍的說法是認為晶板利用twist的方式造成連續的顏色變化。除了機制上的探討之外,不同型態球晶之間的物理性質也是可以互相比較,例如:球晶成長速率、表面結構、晶體結構等等。
接著為了探討mixed-morphology spherulite會不會因為結晶性高分子的立體結構改變而有所變化或者不會出現,我們將PLLA換成右式聚乳酸PDLA的結果也會有mixed-morphology spherulite出現,但是morphology有些許不同。

Low-molecular weight poly(L-lactic acid) (LMw-PLLA) was blended with syndiotactic poly(methyl methacrylate) (sPMMA) and the miscibility of this blend system was investigated by differential scanning calorimeter (DSC). DSC thermograms for LMw-PLLA/sPMMA blends show single glass transition temperature (Tg) and the k value of the Gordon-Taylor equation is 0.3, indicating that LMw-PLLA/sPMMA blends are miscible at the all composition. From the DSC thermgrams, except the Tg, normal melting temperature of LMw-PLLA and cold crystallization temperature (Tcc), were also observed a small extra exothermic peak near 172oC. Thus, we proposed a hypothesis that the extra exothermic peak was resulted from the complex forming of LMw-PLLA/sPMMA. Additionally, wide-angle X-ray diffraction (WAXD), DSC and Fourier-transform infrared spectroscopy (FTIR) results were proven.
The miscibility and morphology of LMw-PLLA and atactic poly(methyl methacrylate) (aPMMA) blend system with different molecular weight of aPMMA were characterized first. From the DSC thermograms, LMw-PLLA/aPMMA blends show single Tg. The LMw-PLLA/aPMMA blends with different molecular weight of aPMMA exhibited monotonous increase in Tg-composition relationship, which could be described by the Gordon-Taylor equation with k value of 0.2-0.35. Besides, the morphologies were observed by polarized optical microscopy (POM). We found that there exists “mixed-morphology spherulite” at particular molecular weight, blend composition and crystal temperature (Tc). The mixed-morphology spherulite means that two types of spherulite grow together with the same nucleus. The two types of sperulite have the same unit cell from the WAXD data but different growth rate from POM observation. The other significant phenomenon of mixed-morphology spherulite is that there are two birefringent colors, blue and orange, at the same quarter. The more detail crystal structure was observed by atomic-force microscopy (AFM). The results illustrate that different birefringent colors at the same quarter indicate different bending directions of edge-on lamellae.

中文摘要 I
Abstract II
致謝 III
圖目錄 XII
第一章簡介 1
1.1 前言 1
1.2 研究動機、目的 2
1.3 研究方向 2
2.1 Stereocomplex相關文獻、研究 3
2.2 Dual spherulite相關文獻、研究 7
2.3 聚乳酸 (PLA) 相關特性、文獻及研究 9
2.4 偏光顯微鏡與高分子球晶相關原理 12
第三章 實驗 14
3.1 實驗所使用的高分子及溶劑 14
3.2 實驗使用之儀器 15
第四章 結果與討論 17
4.1 LMw-PLLA/sPMMA摻混系統 17
4.2 LMw-PLLA/aPMMA摻混系統 20
結論 28
Reference 57
Curriculum vitae 68

[1]T. A. Callaghan and D. R. Paul, Interaction energies for blends of poly(methyl methacrylate), polystyrene, and poly(.alpha.-methylstyrene) by the critical molecular weight method, Macromolecules, vol. 26, pp. 2439-2450, 1993.
[2]C.-P. Chiang and E. M. Woo, Solvent effects on phase behavior with false UCST in blends of PVPh with aliphatic polyesters, European Polymer Journal, vol. 42, pp. 1875-1884, 2006.
[3]T. K. Mandal and E. M. Woo, Marginal miscibility and solvent-dependent phase behavior in solution-blended poly(vinyl methyl ether)/poly(benzyl methacrylate), Macromolecular Chemistry and Physics, vol. 200, pp. 1143-1149, 1999.
[4]S. Nurkhamidah and E. M. Woo, Cracks and Ring Bands of Poly(3-hydroxybutyrate) on Precrystallized Poly(l-lactic acid) Template, Industrial & Engineering Chemistry Research, vol. 50, pp. 4494-4503, 2011.
[5]E. Blümm and A. J. Owen, Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends, Polymer, vol. 36, pp. 4077-4081, 1995.
[6]M. L. Focarete, M. Scandola, P. Dobrzynski, and M. Kowalczuk, Miscibility and Mechanical Properties of Blends of (l)-Lactide Copolymers with Atactic Poly(3-hydroxybutyrate), Macromolecules, vol. 35, pp. 8472-8477, 2002.
[7]E. M. Woo, Y.-T. Hsieh, W.-T. Chen, N.-T. Kuo, and L.-Y. Wang, Immiscibility–miscibility phase transformation in blends of poly(ethylene succinate) with poly(L-lactic acid)s of different molecular weights, Journal of Polymer Science Part B: Polymer Physics, vol. 48, pp. 1135-1147, 2010.
[8]W.-J. Chiang and E. M. Woo, Comparison of glass transition and interpretation on miscibility in blends of amorphous poly(vinyl methyl ether) with highly crystallizable versus less-crystallizable polyesters, Journal of Polymer Science Part B: Polymer Physics, vol. 45, pp. 2899-2911, 2007.
[9]J.-H. Lin and E. M. Woo, Correlation between interactions, miscibility, and spherulite growth in crystalline/crystalline blends of poly(ethylene oxide) and polyesters, Polymer, vol. 47, pp. 6826-6835, 2006.
[10]Y. Tokiwa and T. Suzuki, Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase, Journal of Applied Polymer Science, vol. 26, pp. 441-448, 1981.
[11]T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell, and J. D. Stroupe, CRYSTALLINE POLYMERS OF METHYL METHACRYLATE, Journal of the American Chemical Society, vol. 80, pp. 1768-1769, 1958.
[12]Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, Stereocomplex formation between enantiomeric poly(lactides), Macromolecules, vol. 20, pp. 904-906, 1987.
[13]H. Tsuji, S. H. Hyon, and Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic acid), Macromolecules, vol. 24, pp. 5657-5662, 1991.
[14]H. Tsuji and Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt, Macromolecules, vol. 26, pp. 6918-6926, 1993.
[15]K.-S. Kim, I.-J. Chin, J. S. Yoon, H. J. Choi, D. C. Lee, and K. H. Lee, Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends, Journal of Applied Polymer Science, vol. 82, pp. 3618-3626, 2001.
[16]E. M. Woo, Y.-H. Chou, W.-J. Chiang, I. T. Chen, I. H. Huang, and N.-T. Kuo, Amorphous phase behavior and crystalline morphology in blends of poly(vinyl methyl ether) with isomeric polyesters: poly(hexamethylene adipate) and poly(ɛ-caprolactone), Polymer Journal, vol. 42, pp. 391-400, 2010.
[17]I. H. Huang, L. Chang, and E. M. Woo, Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate), Macromolecular Chemistry and Physics, vol. 212, pp. 1155-1164, 2011.
[18]B. Lotz and S. Z. D. Cheng, A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals, Polymer, vol. 46, pp. 577-610, 2005.
[19]J. Slager and A. J. Domb, Biopolymer stereocomplexes, Advanced Drug Delivery Reviews, vol. 55, pp. 549-583, 2003.
[20]H. Tsuji, S. Yamamoto, A. Okumura, and Y. Sugiura, Heterostereocomplexation between Biodegradable and Optically Active Polyesters as a Versatile Preparation Method for Biodegradable Materials, Biomacromolecules, vol. 11, pp. 252-258, 2009.
[21]H. Tsuji, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications, Macromolecular Bioscience, vol. 5, pp. 569-97, 2005.
[22]E. Schomaker and G. Challa, Complexation of stereoregular poly(methyl methacrylates). 11. A mechanistic model for stereocomplexation in the bulk, Macromolecules, vol. 21, pp. 2195-2203, 1988.
[23]E. Schomaker, H. Hoppen, and G. Challa, Complexation of stereoregular poly(methyl methacrylates). 12. Complexation process in dilute solution, Macromolecules, vol. 21, pp. 2203-2209, 1988.
[24]E. Schomaker, G. Ten Brinke, and G. Challa, Complexation of stereoregular poly(methyl methacrylates). 8. Calorimetric investigations, Macromolecules, vol. 18, pp. 1930-1937, 1985.
[25]E. J. Lemieux and R. E. Prud'homme, Crystallization behaviour of stereocomplexed poly(methyl methacrylates): influence of thermal history, Polymer, vol. 39, pp. 5453-5460, 1998.
[26]F. Bosscher, D. Keekstra, and G. Challa, The influence of ester groups on the stereocomplex formation between different polyalkylmethacrylates, Polymer, vol. 22, pp. 124-126, 1981.
[27]E. Schomaker and G. Challa, Complexation of stereoregular poly(methyl methacrylates). 14. The basic structure of the stereocomplex of isotactic and syndiotactic poly(methyl methacrylate), Macromolecules, vol. 22, pp. 3337-3341, 1989.
[28]K. L. Beers, J. F. Douglas, E. J. Amis, and A. Karim, Combinatorial Measurements of Crystallization Growth Rate and Morphology in Thin Films of Isotactic Polystyrene, Langmuir, vol. 19, pp. 3935-3940, 2003.
[29]J. Spěváček and B. Schneider, Characterization of the structure of the stereocomplex of poly(methyl methacrylate) in solution from NMR relaxation data, Die Makromolekulare Chemie, vol. 176, pp. 729-743, 1975.
[30]J. Spêváček, Ordered structures of stereoregular poly(methyl meth-acrylates) in solutions studied by spectroscopic methods, Makromolekulare Chemie. Macromolecular Symposia, vol. 39, pp. 71-83, 1990.
[31]J. Dybal, J. Štokr, and B. Schneider, Vibrational spectra and structure of stereoregular poly(methyl methacrylates) and of the stereocomplex, Polymer, vol. 24, pp. 971-980, 1983.
[32]J. M. O'Reilly and R. A. Mosher, Conformational energies of stereoregular poly(methyl methacrylate) by Fourier transform infrared spectroscopy, Macromolecules, vol. 14, pp. 602-608, 1981.
[33]O. N. Tretinnikov, Backbone and Ester Group Conformations of Stereoregular Poly(methyl methacrylate)s in the Stereocomplex, Macromolecules, vol. 36, pp. 2179-2182, 2003.
[34]O. N. Tretinnikov and K. Ohta, Conformation-Sensitive Infrared Bands and Conformational Characteristics of Stereoregular Poly(methyl methacrylate)s by Variable-Temperature FTIR Spectroscopy, Macromolecules, vol. 35, pp. 7343-7353, 2002.
[35]Y. Mori and H. Tanzawa, Viscoelastic properties of stereocomplex polymers, Journal of Applied Polymer Science, vol. 20, pp. 1775-1785, 1976.
[36]P. E. M. Allen, D. M. Host, V. T. Truong, and D. R. G. Williams, Some physical and mechanical properties of isotactic-atactic poly(methyl methacrylate) blends and stereoblocks, European Polymer Journal, vol. 21, pp. 603-610, 1985.
[37]N. G. Belnikevitch, L. Mrkvičková, and O. Quadrat, Stereo complexes in solutions of syndio- and isotactic poly(methyl methacrylate) mixtures: 1. Aggregation time and character of aggregated particles in different solvents, Polymer, vol. 24, pp. 713-718, 1983.
[38]E. J. Vorenkamp and G. Challa, Association of stereoregular poly(methylmethacrylates): 5. Stereo-complex formation in dilute solutions, Polymer, vol. 22, pp. 1705-1708, 1981.
[39]H. Z. Liu and K.-J. Liu, Stereochemical Interaction between Isotactic and Syndiotactic Poly(methyl methacrylates) in Polar and Nonpolar Solvents, Macromolecules, vol. 1, pp. 157-162, 1968.
[40]W. Borchard, M. Pyrlik, and G. Rehage, Association phenomena of PMMA in solutions and gels, Die Makromolekulare Chemie, vol. 145, pp. 169-188, 1971.
[41]I. A. Katime and J. R. Quintana, Stereoassociation of poly(methyl methacrylate): Study on the complexation stoichiometry and structural characteristics of the aggregates, Die Makromolekulare Chemie, vol. 189, pp. 1373-1385, 1988.
[42]A. M. Liquori, G. Anzuino, V. M. Coiro, M. D'alagni, P. Sanis De, and M. Savino, Complementary Stereospecific Interaction Between Isotactic And Syndiotactic Polymer Molecular, Nature, vol. 206, pp. 358--362, 1965.
[43]J. Kumaki, T. Kawauchi, K. Okoshi, H. Kusanagi, and E. Yashima, Supramolecular Helical Structure of the Stereocomplex Composed of Complementary Isotactic and Syndiotactic Poly(methyl methacrylate)s as Revealed by Atomic Force Microscopy, Angewandte Chemie, vol. 119, pp. 5444-5447, 2007.
[44]T. Serizawa, K.-i. Hamada, T. Kitayama, N. Fujimoto, K. Hatada, and M. Akashi, Stepwise Stereocomplex Assembly of Stereoregular Poly(methyl methacrylate)s on a Substrate, Journal of the American Chemical Society, vol. 122, pp. 1891-1899, 2000.
[45]T. Kida, M. Mouri, and M. Akashi, Fabrication of hollow capsules composed of poly(methyl methacrylate) stereocomplex films, Angew Chem Int Ed Engl, vol. 45, pp. 7534-6, 2006.
[46]D. Brizzolara, H.-J. Cantow, K. Diederichs, E. Keller, and A. J. Domb, Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s, Macromolecules, vol. 29, pp. 191-197, 1996.
[47]H. Tsuji and Y. Tezuka, Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from the Melt, Biomacromolecules, vol. 5, pp. 1181-1186, 2004.
[48]T. Okihara, M. Tsuji, A. Kawaguchi, K.-I. Katayama, H. Tsuji, S.-H. Hyon, and Y. Ikada, Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide), Journal of Macromolecular Science, Part B, vol. 30, pp. 119-140, 1991.
[49]J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, Structural and optical properties of poly lactic acids, Journal of Applied Physics, vol. 77, p. 2957, 1995.
[50]K. Tashiro, S. Sasaki, and M. Kobayashi, Structural Investigation of Orthorhombic-to-Hexagonal Phase Transition in Polyethylene Crystal:  The Experimental Confirmation of the Conformationally Disordered Structure by X-ray Diffraction and Infrared/Raman Spectroscopic Measurements, Macromolecules, vol. 29, pp. 7460-7469, 1996.
[51]J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, and B. Lotz, The frustrated structure of poly(l-lactide), Polymer, vol. 41, pp. 8921-8930, 2000.
[52]L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, and B. Lotz, Epitaxial crystallization and crystalline polymorphism of polylactides, Polymer, vol. 41, pp. 8909-8919, 2000.
[53]K. Fukushima and Y. Kimura, Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application, Polymer International, vol. 55, pp. 626-642, 2006.
[54]J. Zhang, H. Sato, H. Tsuji, I. Noda, and Y. Ozaki, Infrared Spectroscopic Study of CH3•••OC Interaction during Poly(l-lactide)/Poly(d-lactide) Stereocomplex Formation, Macromolecules, vol. 38, pp. 1822-1828, 2005.
[55]H. Tsuji, F. Horii, S. H. Hyon, and Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions, Macromolecules, vol. 24, pp. 2719-2724, 1991.
[56]H. Tsuji, S. H. Hyon, and Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution, Macromolecules, vol. 24, pp. 5651-5656, 1991.
[57]H. Tsuji, S. H. Hyon, and Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution, Macromolecules, vol. 25, pp. 2940-2946, 1992.
[58]S. Brochu, R. E. Prud'homme, I. Barakat, and R. Jerome, Stereocomplexation and Morphology of Polylactides, Macromolecules, vol. 28, pp. 5230-5239, 1995.
[59]H. Tsuji and Y. Ikada, Crystallization from the melt of poly(lactide)s with different optical purities and their blends, Macromolecular Chemistry and Physics, vol. 197, pp. 3483-3499, 1996.
[60]I. A. Katime, J. R. Quintana, and C. Strazielle, Relationship between physical parameters of the solvent and its influence in stereocomplex formation, Die Makromolekulare Chemie, vol. 187, pp. 1441-1455, 1986.
[61]W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra, and J. Feijén, Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B), Macromolecular Chemistry and Physics, vol. 196, pp. 3687-3694, 1995.
[62]N. Yui, P. J. Dijkstra, and J. Feijen, Stereo block copolymers of L- and D-lactides, Die Makromolekulare Chemie, vol. 191, pp. 481-488, 1990.
[63]H. Tsuji, Y. Ikada, S.-H. Hyon, Y. Kimura, and T. Kitao, Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(D-lactic acid) and poly(L-lactic acid), Journal of Applied Polymer Science, vol. 51, pp. 337-344, 1994.
[64]S. Li and M. Vert, Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization of l(d)-Lactide in the Presence of Poly(ethylene glycol), Macromolecules, vol. 36, pp. 8008-8014, 2003.
[65]S. Li, Bioresorbable Hydrogels Prepared Through Stereocomplexation between Poly(L-lactide) and Poly(D-lactide) Blocks Attached to Poly(ethylene glycol), Macromolecular Bioscience, vol. 3, pp. 657-661, 2003.
[66]H. Sakakihara, Y. Takahashi, H. Tadokoro, N. Oguni, and H. Tani, Structural Studies of Isotactic Poly(tert-butylethylene oxide), Macromolecules, vol. 6, pp. 205-212, 1973.
[67]K. L. Singfield and G. R. Brown, Optically Active Polyethers. 1. Studies of the Crystallization in Blends of the Enantiomers and the Stereoblock Form of Poly(epichlorohydrin), Macromolecules, vol. 28, pp. 1290-1297, 1995.
[68]P. Dumas, N. Spassky, and P. Sigwalt, Preparation and polymerization of racemic and optically active tert-butyl thiirane, Die Makromolekulare Chemie, vol. 156, pp. 55-64, 1972.
[69]Z. Jiang, M. T. Boyer, and A. Sen, Chiral and Steric Recognition in Optically Active, Isotactic, Alternating .alpha.-Olefin-Carbon Monoxide Copolymers. Effect on Physical Properties and Chemical Reactivity, Journal of the American Chemical Society, vol. 117, pp. 7037-7038, 1995.
[70]M. Tsuboi, A. Wada, and N. Nagashima, Sidechain-sidechain interaction between the α-helices of L- and D-polypeptide chains, Journal of Molecular Biology, vol. 3, pp. 705-706, 1961.
[71]T. Yoshida, S. Sakurai, T. Okuda, and Y. Takagi, A Racemic Compound of α-Helical Polypeptide, Journal of the American Chemical Society, vol. 84, pp. 3590-3591, 1962.
[72]I. Iribarren, C. Alemán, C. Regaño, A. Martínez de Ilarduya, J. J. Bou, and S. Muñoz-Guerra, Stereocopolyamides Derived from 2,3-Di-O-Methyl-d- and -l-Tartaric Acids and Hexamethylenediamine. 2. Influence of the Configurational Composition on the Crystal Structure of Optically Compensated Systems, Macromolecules, vol. 29, pp. 8413-8424, 1996.
[73]D. Grenier and R. E. Prud'homme, Complex formation between enantiomeric polyesters, Journal of Polymer Science: Polymer Physics Edition, vol. 22, pp. 577-587, 1984.
[74]R. Voyer and R. E. Prud'Homme, Stereocomplexation de chaines isotactiques derivees de poly(β-propiolactones) β-substituees, European Polymer Journal, vol. 25, pp. 365-369, 1989.
[75]K. Hatada, S.-i. Shimizu, Y. Terawaki, K. Ohta, and H. Yuki, Complex Formation between Isotactic Polymers of R-(+)- and S-(−)-α-Methylbenzyl Methacrylates in Bulk and in Solution, Polymer Journal, vol. 13, pp. 811-812, 1981.
[76]F. Sanda, M. Nakamura, and T. Endo, Syntheses and Radical Copolymerization Behavior of Optically Active Methacrylamides Having l- and d-Leucine Moieties. Interaction between l- and d-Forms, Macromolecules, vol. 29, pp. 8064-8068, 1996.
[77]R. S. Stein and A. Misra, Morphological studies on polybutylene terephthalate, Journal of Polymer Science: Polymer Physics Edition, vol. 18, pp. 327-342, 1980.
[78]E. J. Roche, R. S. Stein, and E. L. Thomas, Electron microscopy study of the structure of normal and abnormal poly(butylene terephthalate) spherulites, Journal of Polymer Science: Polymer Physics Edition, vol. 18, pp. 1145-1158, 1980.
[79]Y.-F. Chen, E. M. Woo, and S.-H. Li, Dual Types of Spherulites in Poly(octamethylene terephthalate) Confined in Thin-Film Growth, Langmuir, vol. 24, pp. 11880-11888, 2008.
[80]H. Schönherr, D. Snétivy, and G. J. Vansco, A nanoscopic view at the spherulitic morphology of isotactic polypropylene by atomic force microscopy, Polymer Bulletin, vol. 30, pp. 567-574, 1993.
[81]D. Braun, M. Jacobs, and G. P. Hellmann, On the morphology of poly(vinylidene fluoride) crystals in blends, Polymer, vol. 35, pp. 706-717, 1994.
[82]K. C. Yen, E. M. Woo, and K. Tashiro, Six types of spherulite morphologies with polymorphic crystals in poly(heptamethylene terephthalate), Polymer, vol. 51, pp. 5592-5603, 2010.
[83]E. M. Woo, S. Nurkhamidah, and Y. F. Chen, Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate), Phys Chem Chem Phys, vol. 13, pp. 17841-51, 2011.
[84]C. Fraschini, L. Jiménez, B. Kalala, and R. E. Prud’homme, Polymorphism and cross-nucleation in poly(1,3-dioxolan), Polymer, vol. 53, pp. 188-195, 2012.
[85]M. C. Wu and E. M. Woo, Effects of α-form or β-form nuclei on polymorphic crystalline morphology of poly(butylene adipate), Polymer International, vol. 54, pp. 1681-1688, 2005.
[86]E. M. Woo, K. C. Yen, and M. C. Wu, Analysis of multiple melting behavior of spherulites comprising ring-band shell/ringless core in polymorphic poly(butylene adipate), Journal of Polymer Science Part B: Polymer Physics, vol. 46, pp. 892-899, 2008.
[87]L. Zhao, X. Wang, L. Li, and Z. Gan, Structural analysis of poly(butylene adipate) banded spherulites from their biodegradation behavior, Polymer, vol. 48, pp. 6152-6161, 2007.
[88]A. K. Ghosh, E. M. Woo, Y.-S. Sun, L.-T. Lee, and M.-C. Wu, Characterization and Analyses on Complex Melting, Polymorphism, and Crystal Phases in Melt-Crystallized Poly(hexamethylene terephthalate), Macromolecules, vol. 38, pp. 4780-4790, 2005.
[89]I. H. Hall and B. A. Ibrahim, The structure and properties of poly(hexamethylene terephthalate): 1. The preparation, morphology and unit cells of three allomorphs, Polymer, vol. 23, pp. 805-816, 1982.
[90]A. Palmer, S. Poulin-Dandurand, J. F. Revol, and F. Brisse, Poly(hexamethylene terephthalate)—I. Interpretation of its diffraction patterns, European Polymer Journal, vol. 20, pp. 783-789, 1984.
[91]B. Lotz and A. Thierry, Spherulite Morphology of Form III Isotactic Poly(1-butene), Macromolecules, vol. 36, pp. 286-290, 2002.
[92]A. Marigo, C. Marega, G. Cecchin, G. Collina, and G. Ferrara, Phase transition II → I in isotactic poly-1-butene: wide- and small-angle X-ray scattering measurements, European Polymer Journal, vol. 36, pp. 131-136, 2000.
[93]M. L. Di Lorenzo and M. C. Righetti, The three-phase structure of isotactic poly(1-butene), Polymer, vol. 49, pp. 1323-1331, 2008.
[94]V. H. Mareau and R. E. Prud'homme, Dual Growth Rates and Morphologies of Isothermally Crystallized Miscible Polymer Blends, Macromolecules, vol. 35, pp. 5338-5341, 2002.
[95]C. M. Agrawal and R. B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, Journal of Biomedical Materials Research, vol. 55, pp. 141-150, 2001.
[96]P. U. Rokkanen, O. Böstman, E. Hirvensalo, E. A. Mäkelä, E. K. Partio, H. Pätiälä, S. Vainionpää, V. Kimmo, and P. Törmälä, Bioabsorbable fixation in orthopaedic surgery and traumatology, Biomaterials, vol. 21, pp. 2607-2613, 2000.
[97]Y.-T. Hsieh, N.-T. Kuo, and E. M. Woo, Thermal analysis on phase behavior of poly(l-lactic acid) interacting with aliphatic polyesters, Journal of Thermal Analysis and Calorimetry, vol. 107, pp. 745-756, 2011.
[98]M. Shibata, N. Teramoto, and Y. Inoue, Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends, Polymer, vol. 48, pp. 2768-2777, 2007.
[99]L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, and M. Hanesaka, Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s, Polymer, vol. 50, pp. 4007-4017, 2009.
[100]I. Ohkoshi, H. Abe, and Y. Doi, Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate], Polymer, vol. 41, pp. 5985-5992, 2000.
[101]D. Maillard and R. E. Prud'homme, Crystallization of Ultrathin Films of Polylactides: From Chain Chirality to Lamella Curvature and Twisting, Macromolecules, vol. 41, pp. 1705-1712, 2008.
[102]I. Saracovan, J. K. Cox, J. F. Revol, R. S. J. Manley, and G. R. Brown, Optically Active Polyethers. 3. On the Relationship between Main-Chain Chirality and the Lamellar Morphology of Solution-Grown Single Crystals, Macromolecules, vol. 32, pp. 717-725, 1999.
[103]S. Sasaki and T. Asakura, Helix Distortion and Crystal Structure of the α-Form of Poly(l-lactide), Macromolecules, vol. 36, pp. 8385-8390, 2003.
[104]D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, and S.-H. Hyon, Preparation of Oriented β-Form Poly(l-lactic acid) by Solid-State Coextrusion:  Effect of Extrusion Variables, Macromolecules, vol. 36, pp. 3601-3605, 2003/05/01 2003.
[105]P. De Santis and A. J. Kovacs, Molecular conformation of poly(S-lactic acid), Biopolymers, vol. 6, pp. 299-306, 1968.
[106]B. Eling, S. Gogolewski, and A. J. Pennings, Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres, Polymer, vol. 23, pp. 1587-1593, 1982.
[107]J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy, Macromolecules, vol. 38, pp. 8012-8021, 2005.
[108]S.-H. Li and E. M. Woo, Effects of chain configuration on UCST behavior in blends of poly(L-lactic acid) with tactic poly(methyl methacrylate)s, Journal of Polymer Science Part B: Polymer Physics, vol. 46, pp. 2355-2369, 2008.
[109]謝雅婷, 生物可分解類高分子摻合體於微觀尺度下之自組裝晶板排列, 國立成功大學化學工程學系碩士論文, 2010.
[110]J. M. Marentette and G. R. Brown, Polymer spherulites: I. Birefringence and morphology, Journal of Chemical Education, vol. 70, p. 435, 1993.
[111]S.-H. Li and E. M. Woo, Immiscibility–miscibility phase transitions in blends of poly(L-lactide) with poly(methyl methacrylate), Polymer International, vol. 57, pp. 1242-1251, 2008.
[112]M. Gordon and J. S. Taylor, Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers, Journal of Applied Chemistry, vol. 2, pp. 493-500, 1952.
[113]W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, and P. Zugenmaier, Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers, Macromolecules, vol. 23, pp. 634-642, 1990.
[114]E. J. Vorenkamp, F. Bosscher, and G. Challa, Association of stereoregular poly(methyl methacrylates): 4. Further study on the composition of the stereocomplex, Polymer, vol. 20, pp. 59-64, 1979.
[115]E. L. Feitsma, A. de Boer, and G. Challa, Association of stereoregular poly(methyl methacrylates): 2. Formation of stereocomplex in bulk, Polymer, vol. 16, pp. 515-519, 1975.
[116]S. Asai, T. Kawano, S.-i. Hirota, Y. Tominaga, M. Sumita, and T. Mizumoto, Structure and properties of highly stereoregular isotactic poly(methyl methacrylate) and syndiotactic poly(methyl methacrylate) blends treated with supercritical CO2, Polymer, vol. 48, pp. 5116-5124, 2007.
[117]H. Tsuji and A. Okumura, Stereocomplex Formation between Enantiomeric Substituted Poly(lactide)s: Blends of Poly[(S)-2-hydroxybutyrate] and Poly[(R)-2-hydroxybutyrate], Macromolecules, vol. 42, pp. 7263-7266, 2009.
[118]K. C. Yen and E. M. Woo, Thermal, spectroscopy, and morphological studies on polymorphic crystals in poly(heptamethylene terephthalate), Polymer, vol. 50, pp. 662-669, 2009.
[119]Y. Kawahara, S. Naruko, A. Nakayama, M.-C. Wu, E. Woo, and M. Tsuji, Stacked-lamellar structure of electrospun poly(heptamethylene terephthalate) nanofibers, Journal of Materials Science, vol. 44, pp. 2137-2142, 2009.
[120]Y. Kawahara, S. Naruko, A. Nakayama, M.-C. Wu, E. Woo, and M. Tsuji, Morphological studies on single crystals and nanofibers of poly(heptamethylene terephthalate), Journal of Materials Science, vol. 44, pp. 4705-4709, 2009.
[121]H.-M. Ye, J. Xu, B.-H. Guo, and T. Iwata, Left- or Right-Handed Lamellar Twists in Poly[(R)-3-hydroxyvalerate] Banded Spherulite: Dependence on Growth Axis, Macromolecules, vol. 42, pp. 694-701, 2008.
[122]G. E. Werner Schulze and M. Biermann, Isothermic formation of spherulitic boundaries with equidistant time marks in a foil of polypropylene, Journal of Materials Science, vol. 31, pp. 963-974, 1996.
[123]H.-M. Ye, J.-S. Wang, S. Tang, J. Xu, X.-Q. Feng, B.-H. Guo, X.-M. Xie, J.-J. Zhou, L. Li, Q. Wu, and G.-Q. Chen, Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer, Macromolecules, vol. 43, pp. 5762-5770, 2010.
[124]G. Cao, Nanostructures& Nanomaterials Synthesis, Properties & Applications.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top