跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧一心
研究生(外文):LusiErnawati
論文名稱:含銀甲殼素奈米複合材之製備及特性探討
論文名稱(外文):Fabrication and Characterization of Silver-Chitosan Nanocomposites
指導教授:劉瑞祥
指導教授(外文):Jui-Hsiang Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:69
中文關鍵詞:甲殼素奈米粒子奈米複合物奈米結構光學性質
外文關鍵詞:chitosannanoparticlesnanocompositesnanostructuraloptical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究利用甲殼素(chitosan)吸附金屬離子之能力吸附銀離子(AgNO3),以硼氫化鈉(NaBH4)為還原劑來製備銀-甲殼素奈米複合材料,藉由POM、SEM、TEM、AFM、UV-Vis等儀器,分析銀-甲殼素奈米複合材料其物化性質。本研究發現,不同濃度的銀離子分散於甲殼素中,在還原之後可以得到紡錘形與羽毛形的自組裝結構。由於其規則性排列,於POM下觀察此結構具有複折射性質(birefringence)。進一步利用SEM、TEM、AFM來觀察還原不同濃度的銀離子時所得到奈米複合物的結構大小。結果顯示,奈米複材的大小會隨著AgNO3濃度增加而有變大的趨勢,隨著靜置時間的增長,藉由TEM與UV-Vis可以觀察到銀奈米粒子的存在。由於奈米銀粒子與銀-甲殼素奈米複合材料具有交互作用力,在SEM下可以觀察到,部分奈米銀粒子會附著於奈米複材上而形成特定的自組裝結構。在應用方面,銀-甲殼素奈米複合材料可被應用於非線性光學的組件以及生物醫學上。
關鍵字:甲殼素、奈米粒子、奈米複合物、奈米結構、光學性質。

ABSTRACT
The main objective of the present investigation deals with the synthesis and characterization of silver-chitosan nanocomposites. Silver-chitosan nanocomposites were prepared by the reducing of silver ions in the presence of chitosan. The optical and morphological properties of the synthesized nanocomposites were studied using polarized optical microscopy (POM), UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The morphological properties studied by POM reveals that silver-chitosan nanocomposites exhibited the spindle like self-assembled structure which is entirely different from the pure chitosan alone. These morphological properties were further confirmedusing SEM and AFM analysis. All the results show the similar morphology, and the size of the nanoparticles increases with increasing of silver salt concentration (AgNO3). This indicates that formation of nanocomposites and controlling of particle size mainly depend on the concentration of Ag used. Transmission electron microscopy (TEM) images and UV–vis spectra of the nanocomposites support the presence of silver nanoparticles. From the above optical and morphological studies, it was found that the formation of silver cluster plays an important role assiginificant interaction with chitosan composites forming some specific self-assembled constructions. Balance of internal and external forces of matrices shows the final construction. Such kind of combinations of silver with chitosan in composites system is expected to be applied in non-linear optics and biomedical applications.
Keywords: chitosan, nanoparticles, nanocomposites, nanostructural, optical

CONTENTS

中文摘要………………..………………………...………………………………….. .I
ABSTRACT ……………………………………………………………………………..II
ACKNOWLEDGEMENTS…………………………………………………………… III
CONTENTS …....…………………………………………………………………………IV
LIST OF TABLES ............................................................................................................VII
LIST OF FIGURES ……………………………………….…………………………...VIII
LIST OF SCHEMES ………………………………………………………………….XII
CHAPTER 1 INTRODUCTION ……………………………………………………….. 1
1.1 Introduction ……………………………………………………………..1
1.2 Research motivation …………………………………………………….3
CHAPTER 2 THEORETICAL BACKGROUND………………………………………5
2.1 Introduction of Nanocomposites…………………………………........... ……5
2.1.1 Solution or Solvent Casting………………………………………….. 5
2.1.2 Melt Blending………………………………………….………............ 5
2.1.3 In-situ Polymerization……………………………………………….. 7
2.2 Metal-Polymer Nanocomposites……………………….………………... 7
2.2.1 In-situ Synthesize Method……………………….…………………... 8
2.2.2 Ex-situ Synthesize Method……………………….………………….. 8
2.3 Synthesize of Silver Nanoparticles in Nanocomposites system……..……… 8
2.3.1 Traditional Synthesis Method……………………………….…........... 9
2.3.2 Non-Traditional Synthesis Method………………………..……........ 10
2.4 Mechanism of Silver Nanoparticles Formation with reduction Agent........... 12
2.5 Nanocomposites Based on Chitosan……………………….……….............. 13
2.6 The Reduction of Metal ions from their Salt Solution at the Polymer Solution Interface (In situ reduction Method)……………………………... 15
2.7 General Application of Silver-Chitosan Nanocomposites………..……….. 16
2.7.1 Antibacterial Properties and Food Packaging…………………………17
2.7.2 Biofilm, Optical Application, Colour Filter-Coating, Biosensor.......... 19
2.7.3 Development of Drug Delivery and Commercialization of Nanomaterials………………………………………………………… 22
2.7.4 Future Opportunities and Challenges………………………………… 23
CHAPTER 3 EXPERIMENTAL SECTION
3.1 Materials For Preparation of Metal-Chitosan Nanocomposites…….…........ 25
3.2 Preparation of Pure Chitosan Solution in Spin Casting Film……………… 25
3.3 Synthesis and Preparation of Silver-Chitosan Nanocomposites…….….... 25
CHAPTER 4 RESULT AND DISCUSSION
4.1 Characterization of Pure Chitosan by Using Polarized Optical Microscopy………………………………………………………………… 29
4.2 Characterization of Pure Chitosan by Using Atomic Force Microscopy…… 30
4.3 Characterization of Silver-Chitosan Nanocomposites by Using Polarized Optical microscopy……………………………………………… 31
4.4 Characterization of Silver-Chitosan Nanocomposites by Using Scanning Electron Microscopy (SEM)…………………………………….. 35
4.5 Characterization of Silver-Chitosan Nanocomposites by using EDS Analysis…………………………………………………………………….. 38
4.6 Characterization of Silver-Chitosan Nanocomposites by Using Atomic Force Microscopy………………………………….……………… 42
4.7 Surface Roughness Between Chitosan and Silver-Chitosan Nanocomposites………………………………………….……..................... 46
4.8 Characterization of Silver-Chitosan Nanocomposites by using Transmission Electron miscroscopy (TEM)…………………………………….................. 50
4.9 Structural Formation Mechanism of Silver-Chitosan Nanocomposites…… 52
4.10 Characterization of Silver-Chitosan Nanocomposites by Using UV-Vis spectra…………………………………………………................................. 53
4.11 Effect of AgNO3 Concentration on Structural Size of Silver Nanocomposites……………………………………………………………. 54
4.12 Study of the Stability of Chitosan-Silver Nanocomposites Under a Wide Range of Environmental Condition………………………………………… 56
4.13 Time Effect on Structural Size of Silver-Chitosan Nanocomposites Via EDS Analysis…………………………………………………………………….. 58
4.14 Time Effect on Structural Size of Silver-Chitosan Nanocomposites Via SEM Analysis……………………………………………………………….......... 60

CHAPTER 5 CONCLUSION. …..………………………………………………………64
REFERENCES …………………………………………………………………………...65


REFERENCES

1.Song J.Y., Kim B.S., Bioproc. Biosyst. Eng., 2009, 32, pp. 79–84
2.Panigrahi S., Kundu S., Ghosh S.K., Nath S., Pal T. J. Nanoparticle. Res., 2004, 6, pp.411-414
3.Khaydarov R.A., Khaydarov R.R., Gapurowa. O.,Estrin Y.,Scheper T. J. Nanoparticle. Res., 2009, 11, pp. 1193-1200
4.Chen D., Qiao X., Qiu X. J. Mater. Science., 2009, 44, pp. 1076-1081
5.Zhang W., Qiao X., Chen . J. Mater. Sci. Eng., 2007, 142, pp. 1-15
6.Martinez. Castanon G.A.,Nin. O.Martınez N.,Martinez. Gutierrez.F.,Martinez Mendoza ,I.R., Ruiz F., J. Nanoparticle Res., 2008, 10, pp. 1343-1348
7.Rai M., Yadav A., Gade.A., Biotechnol. Adv., 2009, 27, pp. 76-83
8.Song K.C., Lee S.M., Park T.S., Lee B.S., Korean J.Chem. Eng., 2009, 26, pp. 153-155.
9.Goia D.V., Matijevic´ E. New J.Chem., 1998, 98, pp. 1203-1215
10. Jiang G., Wang L., Chen T.,Yu H.,Wang.J., J.Mater. Sci., 2005, 40, pp. 1681-1683
11. Nath N., Chilkoti A.,J. Fluorescense., 2004, 14, pp. 377–389
12.Tolaymata T.M., El Badawyb A.M., Genaidyc. A., Scheckela K.G., Luxtona T.P.,
Suidan. M., J. Sci. Total. Environt., 2010, 408, pp. 999–1006.
13.Sondi I., Salopek-Sondi B.; J. Colloid and Interface Sci., 2004, 275 pp. 177-182.
14.Ruparelia J. P., Chatterjee A. K., Dutta Gupta S.P., Mukherji S.; Acta Biomaterial., 2008, 4, 3, pp. 707-716.
15.Thomas V., Yallapu M. M., Sreedhar B., Bajpai S. K., J.Colloids. Interf. Sci., 2007, 315, 1, pp. 389-395.
16.Dubas S.T., Kumlangdudsana P., Potiyaraj P., J. Intern. Colloids. Surf., A: Physics and Eng Aspects., 2006, 289, 1-3, pp. 105-109.
17.Shi Z., Neoh K. G., Kang E. T., Wang W., Biomaterials., 2006, 27, 11, pp. 2440.
18.Huang N. M., Radiman S., Lim H. N., Khiew P. S.,Chiu W. S., Lee K. H., Syahida, A.,Hashim R., J.Chem-Eng., 155, No. 1-2, December. 2009, pp. 499-507.
19.Yoksan R., Chirachanchai S., J. Mater. Chemist. Physics., 2009,115, 1,pp. 296-302.
20.Shin H. S.,Yang H. J., Bin Kim S., Lee.M. S., J. Colloids. Interf. Sci.,2004, 274, pp. 89-94.
21.Chou K.-S., Ren Ch. Y., J.Mater.Chemist. Physics., 2000, 64 pp. 241-246.
22.Pillai V., Kumar P., Hou M. Ayyub P.,Shah D.O., J. Adv. colloid. Interf.Sci., 1995 , 55, pp. 241-269.
23.Zhang W., Qiao X.,Chen J.,Wang. H., J.Colloid. Interf. Sci., 2006, 302, pp. 370-373.
24.Kapoor S., Langmuir.,1998 14, pp. 1021-1025.
25.Andersson M., Alfredsson V., Kjellin P., Palmqvist A. E.C., Nano Letters., 2002, 2, 12, pp. 1403-1407.
26.Ghosh S. K., Kundu S., Pal T., Bull. Mater. Sci.,2002, 25, 6, pp. 581-582.
27.Gedanken A.,J. Curnt. Sci., 2003, 85, p. 12.
28.Lopez-Quintela M. A., J. Curnt. Opn. Colloid. Interf. Sci., 2003,8, Pp, 137-144.
29.G.L. Clark, A.F. Smith., J. Phys. Chem.,1986, 40,7, 863.
30.K. Ogawa, Agric,.J. Biol. Chem., 1999, 51,9- 2375.
31.N. Cartier, A. Domard, H. Chanzy., Int. J. Biol. Macromol., 1999, 12, 289.
32.R.J. Samuels., J. Polym. Sci. Polym. Phys., Ed., 1981, 19, 1081.
33.E. Belamie, A. Domard, H. Chanzy, M. Giraud-Guille., Langmuir.,1999,15, 1549.
34.H. Huang, N. Hu, Y. Zeng, G. Zhou., Anal. Biochem., 2002, 308,141.
35.Y. Dong, Q. Yuan, Y. Wu, J. Wang, M. Wang., Polym. J. 2000,32, 326.
36.Y. Dong, K. Sakurai, Y. Wu, Y. Kondo., J. Polym. Sci. Polym.Phys.,2003, 41.
37.K. Esumi, N. Takei, T. Yoshimura, J.Colloids.Surf. B. Biointerf., 2003, 3,117
38.J. Zeng, M.S. Stevenson, R.S. Hikida, P.G. Van Patten., J. Phys. Chem.,2002, 106, 1252.
39.M. Zhao, R.M. Crook, Angew., Chem. Int. Ed., 1999, 38, 364.
40. F. Grohn, G. Kim, B.J. Bauer, E., J. Macromolecules.,2001, 34, 2179.
41. H. Ye, R.W.J. Scott, R.M. Crooks., Langmuir., 2004, 20, (7), 2915.
42. K. Esumi, H. Houdatsu, T. Yoshimura., Langmuir., 2004, 20,(7), 2536.
43.Z.H. Mbhele, M.G. Salemane, C.G.C.E. Van Sittert, J.M. Nedeljkovic,V. Djokovic,
A.S. Luyt., Chem. Mater., 2003, 15 ,5019.
44.H.M. Xiong, X. Zhao, J.S. Chen., J. Phys. Chem.,2001, B. 105,10169.
45.A. Dufresnea,J.Y. Cavaillea, D. Dupeyea, M.G. Ramirezb., J.Polym.,1999,40,(7): 1657.
46.H.Y. Kweon, I.C. Um, Y.H. Park., J. Polym., 2001, 42 ,(15): 6651.
47.Mandal, T.K., Fleming, M. S.,Walt. D.R., Nano. Lett., 2002, 2, 3-7.
48.Corbierre, M. K., Cameron, N. S.; Sutton, M.; Mochrie, S. G. J.; Lurio, L. B.; Ruhm, A. Lennox, R. B., J. Am.Chem. Soc.,2001, 123, 10411-10412.
49.Clark GL, Smith AF., J. Phys Chem., 1937, 40, 863–879.
50.Ogawa K, Yui., Biosci.Biotech-Biochem.,1993, 57,1466 -1469
51.Cartier N, Domard A, Chanzy H., Int. J. Biol.Macromol.,1990,vol.12,290-294.
52.Ogawa K, Oka K., J. Chem. Mater., 1993,5,726-728.
53.Ogawa K., J. Chem Mater., 1996, 8, 2349-2351.
54.Samuels, R. J., J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 1081-105.
55.Belamie E, Domard,A, Henri Chanzy,H., Langmuir., 1999, 15, 1549-1555.
56.Roth C, Martz N, Fuess H., J. Chem. Phys., 2001, 3, 315-319.
57.Lin Y, Cui X, Yen C, Wai CM., J. Phys Chem.,2005, B 109: 14410-14415.
58.Wang Y, Li Y, Yang S, Zhang G, An D, Ce, Wang A, Yang Q, Chen X, Jing X, Wei Y., Nanotechnology.,2006, (17): 3304-3307.
59.Nadagouda MN, Varma RS., Macromol. Rapid. Commun.,2007,28: 465-472
60.Kaittanis C, Nath S, Perez J.M., Polym.J., 2008, 3, (9): 3210.1371.0003253.
61.Qi, L., Z. Xu, X. Jiang, C. Hu and X. Zou.,J.Carbohydrate Research.,2004, 339,(16): 2693-2700.
62.Li, Q., S. Mahendra, D. Y. Lyon., L. Brunet., M. V. Liga., D. Li and P. J. J. Alvarez., J.Water Research.,2008, 42,(18): 4591-4602.
63.Du, Y., X. L. Luo, J. J. Xu and H. Y. Chen., J.Bioelectrochemistry.,2007, 70(2):342-347.
64.Weir, E., A. Lawlor, A. Whelan and F. Regan., J.Analyst.,2008,133, (7):835-845.
65.Zhang, L., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer and O. C. Farokhzad., J.Clinical Pharm. Therapeutics., 2008, 83(5):761-769.
66.Zhang, L., D. Porn.C. M. J. Hu and C. M. Huang., J.Current Medc. Chemist.,2010, 17,(6): 585-594.
67.Davis, M. E., Z. Chen and D. M. Shin., J.Nature.Revw.Drug Discv.,2008, 7,(9):771-782.
68.Tharanathan, R.N., Srinivasa,P.C., Ramesh, M.N.,J.Indian.Patent.,2002,85.
69.Huang, C. Y., S. P. Hsieh, P. A. Kuo, W. N. Jane, J. Tu, Y. N. Wang and C. H. Ko., J.Inter.Biodeteriont. Biodegrad.,2009, 63(8): 998-1007.
70.Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton and E. P. Greenberg., J.Mater. Sci.,1998, 280(5361): 295-298.
71.Decho, A. W.,J. Ecological.Eng.,2010,36(2): 137-144.
72.Simoes, M., L. C. Simoes and M. J. Vieira.,J. Food Sci. Techn.,2010, 43(4): 573-583.
73.Melo, L. F.,The Handbook of Water and Wastewater Microbiology.,2003, London, UK, Academic Presspp. 337-349.
74.Simoes, M., L. C. Simoes and M. J. Vieira., J. Food Sci.Techn.,2010, 43(4): 573-583.
75.Manuel, C. M., O. C. Nunes and L. F. Melo., J. Biofouling.,2010, 26(2): 129-139.
76.Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marĩas and A. M. Mayes., J. Nature., 2008, 452(7185): 301-310.
77.Ferreira, C., R. Rosmaninho, M. Simoes, M. C. Pereira, M. M. S. M. Bastos, O. C. Nunes, M. Coelho and L. F. Melo., J.Bioadhesion-Biofilm Research.,2010, 26(2): 205-212.
78.Melo, L. F. and H. C., In: The Science and Technology of Industrial Water Treatment.,2010, A.Z. Florida, U.S.A. , Talyor and Francis Group.
79.Novoselov K S, Jiang D, Schedin F, et al., J. Proc Natl Acad., Sci USA, 2005, 102: 10451-10453.
80.T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi., J. Biomaterials.,2002, 23, 817.
81.M. Zhang, X.H. Li, Y.D. Gong, N.M. Zhao, X.F. Zhang., J. Biomaterials ., 2002,23 2641.
82.E. Belamie, A. Domard, H. Chanzy, M. Giraud-Guille., Langmuir., 1999,15, 1549.
83.H. Huang, N. Hu, Y. Zeng, G. Zhou, Anal., J. Biochem., 2002, 308141.
84.Y. Dong, Q. Yuan, Y. Wu, J. Wang, M. Wang., Polym. J., 2000,32, 326.
85.Y. Dong, K. Sakurai, Y. Wu, Y. Kondo., J. Polym. Sci. Polym.Phys.,2003, 41,2033.
86.K. Esumi, N. Takei, T. Yoshimura., J. Colloids. Surf. B. Biointerf., 2003, 32, 117.
87.J.Y. Tseng, M.H. Lin, L.K.Chau., J.Colloids. Surf. A. Physico-chem. Eng. Aspects., 2001,182 - 239.
88.B.P. Grady, F. Pompeo, R.L. Shambaugh, D.E. Resasco., J. Phys. Chem., 2002, B 106 (23): 5852.
89.E. Vedejs, Y. Donde., J. Org. Chem., 2000, 65 ,(8): 2337.
90.K. Inomata, L.-Z. Liu, T. Nose, B. Chu., J. Macromolecules., 1999, 32, 1554.
91.J. Foks, M. Luszczek., J. Cryst. Growth., 1995, 134, 347.
92.I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper., Langmuir., 2003, 19, 4831.
93.R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken., Langmuir .,2001, 17, 1406.
94.D. Sajinovic, Z.V. Saponjic, N. Cvjeticanin, M. Marinovic-Cincovic, J.M. Nedeljkovic., J. Chem. Phys. Lett., 2000, 329 ,168.
95.V. Djokovic, J.M. Nedeljkovic., Macromol. Rapid Commun.,2000, 21, 994.
96.R.V. Kumar, Y. Koltypin, Y.S. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken., J. Mater. Chem.,2000,10, 1125.
97.S.H. Yu, M. Yoshimura, J.M.C. Moreno, T. Fujiwara, T. Fujino, R. Teranishi., Langmuir.,2000, 17, 1700.
98.D.W. Oxtoby, A. Laaksonen, T. Vincente., Annu. Rev. Phys.Chemst.,1995. 46: 489-524 .

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊