跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳鳳儀
研究生(外文):Feng-YiChen
論文名稱:光調變性膽固醇有機凝膠體之合成與超分子特性探討
論文名稱(外文):Synthesis and Supramolecular Behaviors of Phototunable Organogelators Derived from Cholesterol
指導教授:劉瑞祥
指導教授(外文):Jui-Hsiang Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:101
中文關鍵詞:自組裝超分子凝膠光調變性光學活性氫鍵
外文關鍵詞:self-assemblysupramolecular gelphototunablechiralhydrogen bond
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
為了製備光可調變性有機凝膠 (phototunable organogel),並探討分子結構與凝膠形成的關係,本研究設計合成一系列含有偶氮苯基團 (azobenzene) 的光學活性衍生物: cholesteryl 4-(pyridin-4-yldiazenyl)
phenyl carbonate (CPA)、 cholesteryl 4-(phenyldiazenyl)phenyl carbonate (CPhA)、 cholesteryl 4-((4-methoxyphenyl)diazenyl)phenyl carbonate (CMA) 與 cholesteryl 4-((4-methoxyphenyl)diazenyl)benzoate (CMAB)。其中藉由導入偶氮苯基團以獲得光調變性;導入具有光學活性的膽固醇基團以誘導螺旋自組裝排列,並提高形成凝膠的可能性。經凝膠化能力測試發現,四種合成的化合物中只有 CMAB 具有凝膠化能力,且可藉由加熱-冷卻或照射紫外光-可見光之物理性外在刺激,調控超分子凝膠行可逆的溶液-凝膠態轉換。輔以分子模擬之結果可知,偶氮苯對位上的取代基與化合物分子的整體構形為凝膠形成與否的關鍵。由動力學分析可推測,分子自組裝會阻礙 CMAB 光異構化 (isomerization),使光異構化速率下降。利用 SEM 及 TEM 觀察凝膠的表面型態及微結構,可知 CMAB 能自組裝為螺旋狀的纖維結構,並進一步交疊為網狀結構而形成超分子凝膠 (supramolecular gel)。推測螺旋結構是 CMAB 分子以膽固醇基團為中心、偶氮苯基團向外,且分子間錯開一個角度的方式堆疊而成。此外,由 DSC 及 POM 結果可知四種合成的化合物均具有液晶相特性,其中 CPA 能與羧酸類形成氫鍵複合物,導致熱性質及液晶相特性的改變。
To fabricate phototunable organogel and investigate the correlation between gelation ability and chemical structures, chiral compounds cholesteryl 4-(pyridin-4-yldiazenyl)phenyl carbonate (CPA), cholesteryl 4-(phenyl-diazenyl)phenyl carbonate (CPhA), cholesteryl 4-((4-methoxyphenyl)diazenyl)phenyl carbonate (CMA) and cholesteryl 4-((4-methoxyphenyl)diazenyl)benzoate (CMAB) containing azobenzene group were synthesized. To promote both the formation of helical constructions and gelation ability, chiral cholesteryl group was introduced into compounds. From the results of typical gelation tests, only CMAB shows the gelation ability, and the transition of solution-gelation state can be controlled reversibly via physical stimulation of heating-cooling or ultraviolet-visible light. Molecular simulation shows that both the substituents of azobenzene group at para position and conformations of molecules are expected as the key factors for the formation of gels. From the results of kinetic analysis, isomerization of CMAB was found to be restricted by molecular self-assembly leads to the decrease of the rate of isomerization. Observations of morphologies and microstructures of gels by SEM and TEM suggest that self-assembly of CMAB forms highly-ordered helical fibers, which are generated by core-centered stacking of cholesteryl group with azobenzene at periphery. Further cross-linking of fibers generates three-dimensional entangled networks, and strong interactions between networks and organic solvents forms stable supramolecular gels. In addition, liquid crystal properties of the synthesized four compounds were confirmed using DSC and POM. CPA forms hydrogen-bonded complex with carboxylic acid, leads to the variation of both thermal and liquid crystalline properties.
摘要 I
Abstract II
致謝 III
目錄 V
表目錄 VII
圖目錄 VIII
Scheme XIII

第一章 緒論 1
1-1 前言 1
1-2 研究動機與方向 4

第二章 原理與文獻回顧 5
2-1 自組裝 5
2-1-1 誘導分子自組裝常見作用力 7
2-1-2 超分子自組裝 9
2-2 凝膠簡介 12
2-2-1 小分子有機凝膠體 14
2-2-2 超分子凝膠之應用 25
2-3 偶氮苯衍生物特性 32
2-3-1 偶氮苯衍生物的光異構化 32
2-3-2 偶氮苯衍生物在自組裝的應用 33

第三章 實驗部分 36
3-1 實驗藥品 36
3-2 實驗儀器 39
3-3 實驗步驟 41
3-3-1 含偶氮苯基團的光學活性化合物之合成 41
3-3-2 化合物於不同溶劑下之凝膠化能力測試 48
3-3-3 CMAB 溶液紫外線-可見光光譜檢測 48
3-3-4 凝膠SEM 、TEM試片製作 49
3-3-5 CPA-羧酸類複合物之製備與分析 49

第四章 結果與討論 51
4-1 含偶氮苯基團的光學活性化合物之鑑定 51
4-2 含偶氮苯基團的光學活性化合物之凝膠化行為探討 56
4-2-1 化合物於不同溶劑下之凝膠化能力探討 56
4-2-2 偶氮苯光異構化對超分子凝膠系統之影響 64
4-2-3 超分子凝膠之微結構探討 70
4-3 含偶氮苯基團的光學活性化合物之熱性質與液晶相探討 78
4-4 CPA-羧酸複合物之熱性質與液晶相探討 84

第五章 結論 94

參考文獻 96

[1]Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules-supermolecules-molecular devices. Nobel Lecture (1987).
[2]Whitesides, G. M. and Grzybowski, B. Self-assembly at all scales. Science 295, 2418-2421 (2002).
[3]Wang, C., Chen, Q., Sun, F., Zhang, D., Zhang, G., Huang, Y., Zhao, R. and Zhu, D. Multistimuli responsive organogels based on a new gelator. J. Am. Chem. Soc. 132, 3092-3096 (2010).
[4]Kishimura, A., Yamashita, T. and Aida, T. Phosphorescent organogels via metallophilic interactions for reversible RGB-color switching. J. Am. Chem. Soc. 127, 179-183 (2005).
[5]Ono, Y., Nakashima, K., Sano, M., Hojo, J. and Shinkai, S. Organogels are useful as a template for the preparation of novel helical silica fibers. J. Mater. Chem. 11, 2412-2419 (2001).
[6]Liu, Q. T., Wang, Y. L., Li, W. and Wu, L. X. Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir 23, 8217-8223 (2007).
[7]Vemula, P. K., Li, J. and John, G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J. Am. Chem. Soc. 128, 8932-8938 (2006).
[8]Lin, Y. C. and Weiss, R. G. A novel gelator of organic liquids and the properties of its gels. Macromolecules 20, 414-417 (1987).
[9]Li, L. S., Jiang, H. Z., Messmore, B. W., Bull, S. R. and Stupp, S. I. A torsional strain mechanism to tune pitch in supramolecular helices. Angew. Chem. Int. Edit. 46, 5873-5876 (2007).
[10]Ran, X., Wang, H., Zhang, P., Bai, B., Zhao, C., Yu, Z. and Li, M. Photo-induced fiber-vesicle morphological change in an organogel based on an azophenyl hydrazide derivative. Soft Matter 7, 8561-8566 (2011).
[11]Matsuzawa, Y. and Tamaoki, N. Photoisomerization of azobenzene units controls the reversible dispersion and reorganization of fibrous self-assembled systems. J. Phys. Chem. B 114, 1586-1590 (2010).
[12]Liu, J. H. and Chiu, Y. H. Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J. Polym. Sci. Pol. Chem. 48, 1142-1148 (2010).
[13]Yan, Y., Lin, Y. Y., Qiao, Y. and Huang, J. B. Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter 7, 6385-6398 (2011).
[14]Zhang, X. and Wang, C. Supramolecular amphiphiles. Chem.Soc. Rev. 40, 94-101 (2011).
[15]Schalley, C. in Analytical Methods in Supramolecular Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).
[16]Chiu, Y. H. and Liu, J. H. Polymerization and characterization of self-assembled beta-cyclodextrin-threaded chiral monomers. J. Polym. Sci. Pol. Chem. 48, 2975-2981 (2010).
[17]Qiao, Y., Lin,Y., Wang, Y., Yang, Z., Liu, J., Zhou, J., Yan, Y. and Huang, J. Metal-driven hierarchical self-assembled one-dimensional nanohelices. Nano lett. 9, 4500-4504 (2009).
[18]Kimura, M., Hatanaka, T., Nomoto, H., Takizawa, J., Fukawa, T., Tatewaki, Y. and Shirai, H. Self-assembled helical nanofibers made of achiral molecular disks having molecular adapter. Chem. Mater. 22, 5732-5738 (2010).
[19]Sangeetha, N. M. and Maitra, U. Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821-836 (2005).
[20]Terech, P. and Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133-3159 (1997).
[21]Xue, P., Lu, R., Chen, G., Zhang, Y., Nomoto, H., Takafuji, M. and Ihara, H. Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism. Chem. Eur. J. 13, 8231-8239 (2007).
[22]Abdallah, D. J. and Weiss, R. G. n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 16, 352-355 (2000).
[23]Pozzo, J. L., Clavier, G. M. and Desvergne, J. P. Rational design of new acid-sensitive organogelators. J. Mater. Chem. 8, 2575-2577 (1998).
[24]Wang, C., Zhang, D. Q., Xiang, J. F. and Zhu, D. B. New organogels based on an anthracene derivative with one urea group and its photodimer: fluorescence enhancement after gelation. Langmuir 23, 9195-9200 (2007).
[25]Zinic, M., Vogtle, F. and Fages, F. in Low Molecular Mass Gelators: Design, Self-Assembly, Function. Vol. 256 Topics in Current Chemistry 39-76 (Springer-Verlag Berlin, 2005).
[26]Lin, Y., Kachar, B. and Weiss, R. G. Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc. 111, 5542-5551 (1989).
[27]Mukkamala, R. and Weiss, R. G. Physical gelation of organic fluids by anthraquinone-steroid-based molecules. Structural features influencing the properties of gels. Langmuir 12, 1474-1482 (1996).
[28]陳玟婷,光學活性有機凝膠體之超分子自組裝與特性探討,國立成功大學化學工程研究所碩士論文 (2011)。
[29]Kawano, S. I., Fujita, N., van Bommel, K. J. C. and Shinkai, S. Pyridine-containing cholesterols as versatile gelators of organic solvents and the subtle influence of Ag(I) on the gel stability. Chem. Lett. 32, 12-13 (2003).
[30]Abraham, S., Vijayaraghavan, R. K. and Das, S. Tuning microstructures in organogels: gelation and spectroscopic properties of mono- and bis-cholesterol-linked diphenylbutadiene derivatives. Langmuir 25, 8507-8513 (2009).
[31]Ballabh, A., Trivedi, D. R. and Dastidar, P. Structural studies of a new low molecular mass organic gelator for organic liquids based on simple salt. Chem. Mater. 15, 2136-2140 (2003).
[32]Moriyama, M., Mizoshita, N., Yokota, T., Kishimoto, K. and Kato, T. Photoresponsive anisotropic soft solids: liquid-crystalline physical gels based on a chiral photochromic gelator. Adv. Mater. 15, 1335-1338 (2003).
[33]Gao, P., Zhan, C. L. and Liu, M. H. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir 22, 775-779 (2006).
[34]Lin, Y. Y., Qiao, Y., Gao, C., Tang, P., Liu, Y., Li, Z., Yan, Y. and Huang, J. Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials. Chem. Mater. 22, 6711-6717 (2010).
[35]王素誼,光異構性偶氮型液晶之合成及其光電特性探討,國立成功大學化學工程研究所碩士論文 (2002)。
[36]Yu, H. F. and Kobayashi, T. Photoresponsive block copolymers containing azobenzenes and other chromophores. Molecules 15, 570-603 (2010).
[37]Wang, Y. P., Han, P., Xu, H., Wang, Z., Zhang, X. and Kabanov, A. V. Photocontrolled self-assembly and disassembly of block Ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26, 709-715 (2010).
[38]Lee, H. K., Kanazawa, A., Shiono, T. and Ikeda, T. All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal. Chem. Mater. 10, 1402-1407 (1998).
[39]Cui, L. and Zhao, Y. Azopyridine side chain polymers: an efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater. 16, 2076-2082 (2004).
[40]Chandran, S. P., Mondiot, F., Mondain-Monval, O. and Loudet, J. C. Photonic control of surface anchoring on solid colloids dispersed in liquid crystals. Langmuir 27, 15185-15198 (2011).
[41]Lin, Y. Y., Wang, A., Qiao, Y., Gao, C., Drechsler, M., Ye, J., Yan, Y. and Huang, J. Rationally designed helical nanofibers via multiple non-covalent interactions: fabrication and modulation. Soft Matter 6, 2031-2036 (2010).
[42]Murata, K., Aoki, M., Nishi, T., Ikeda, A. and Shinkai, S. New choleterol-based gelators with light- and metal-reponsive functions. J. Chem. Soc., Chem. Commun., 1715-1718 (1991).
[43]Sasaki, T., Ikeda, T. and Ichimura, K. Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid crystalline polymer matrices. Macromolecules 26, 151-154 (1993).
[44]Duncan, D. C. and Whitten, D. G. 1H-NMR investigation of the composition, structure, and dynamics of cholesterol-stilbene tethered dyad organogels. Langmuir 16, 6445-6452 (2000).
[45]松本正一、角田市良,劉瑞祥譯,液晶之基礎與應用 (國立編譯館,1996)。
[46]楊博智,光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,國立成功大學化學工程研究所博士論文 (2007)。
[47]Camerel, F., Bonardi, L., Schmutz, M. and Ziessel, R. Highly luminescent gels and mesogens based on elaborated borondipyrromethenes. J. Am. Chem. Soc. 128, 4548-4549 (2006).
[48]Yang, H., Yi, T., Zhou, Z., Zhou, Y., Wu, J., Xu, M., Li, F. and Huang. C. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23, 8224-8230 (2007).
[49]Vemula, P. K., Aslam, U., Mallia, V. A. and John, G. In situ synthesis of gold nanoparticles using molecular gels and liquid crystals from vitamin-C amphiphiles. Chem. Mater. 19, 138-140 (2007).
[50]Chen, F. J., Guo, J. B., Qu, Z. J. and Wei, J. Novel photo-polymerizable chiral hydrogen-bonded self-assembled complexes: preparation, characterization and the utilization as a thermal switching reflective color film. J. Mater. Chem. 21, 8574-8582 (2011).
[51]Hu, W., Cao, H., Song, L., Zhao, H., Li, S., Yang, Z. and Yang, H. Thermally controllable reflective characteristics from rupture and self-assembly of hydrogen bonds in cholesteric liquid crystals. J. Phys. Chem. B 113, 13882-13885 (2009).
[52]Tian, Y. Q., Xu, X. H., Zhao, Y. Y., Tang, X. Y. and Li, T. J. New cholesteric liquid crystals induced by intermolecular hydrogen bonding. Liq. Cryst. 22, 87-96 (1997).
[53]Pavia, D. L., Lampman, G. M. and Kriz, G. S. Introduction to spectroscopy. (Thomson Brooks/Cole, 2001).
[54]Naoum, M. M., Fahmi, A. A., Refaie, A. A. and Alaasar, M. A. Novel hydrogen-bonded angular supramolecular liquid crystals. Liq. Cryst. 39, 47-61 (2012).
[55]Alaasar, M., Tschierske, C. and Prehm, M. Hydrogen-bonded supramolecular complexes formed between isophthalic acid and pyridine-based derivatives. Liq. Cryst. 38, 925-934 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊